作業(yè)寶如圖,已知△ABC中,AB=AC,AH⊥BC于H,等邊△BDF的頂點F在BC上,DF交AH于點E,若BF=8,BC=10,則DE的長為


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
B
分析:根據(jù)等腰△ABC的“三合一”性質求得BH=CH=BC=5;由等邊△BDF的性質求得BF=DF=8,∠EFH=60°.在直角△EHF中,∠HEF=30°,則EF=2HF,所以DE=BF-2HF.
解答:如圖,∵在△ABC中,AB=AC,AH⊥BC,BC=10,
∴BH=BC=5.
又∵△BDF是等邊三角形,且BF=8,
∴BF=DF=8,∠EFH=60°,
∴HF=BF-BH=8-5=3,
∴直角△EHF中,∠HEF=30°,則EF=2HF=6,
∴DE=BF-2HF=8-6=2,即DE=2.
故選:B.
點評:本題考查了等腰三角形的性質和等邊三角形的性質.注意等腰三角形的”三線合一“性質的運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,P是AB上一點,連接CP,以下條件不能判定△ACP∽△ABC的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h=4,D為BC上一點,EF∥BC交AB于E,交AC于F(EF不過A、B),設E到BC的距離為x,△DEF的面積為y,那么y關于x的函數(shù)圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點,則下列結論不正確的是( 。

查看答案和解析>>

同步練習冊答案