已知∠AOB,按如下步驟作圖:以O(shè)為圓心,任意長為半徑作弧,分別交OA、OB于點D、E;分別以D、E為圓心、OD長為半徑作弧,兩弧在∠AOB的內(nèi)部交于點C;作射線OC,并連接線段DC、EC、DE.小彬根據(jù)作圖得出以下結(jié)論:①OC平分∠AOB;②△ODE≌△CDE;③四邊形ODCE是菱形;④DE=DC;⑤OC與DE互相垂直平分.其中正確的是( 。
分析:首先根據(jù)題意畫出圖形,由題意得:OD=OE=CD=EC,即可證得四邊形ODCE是菱形,由菱形的性質(zhì),即可判定OC平分∠AOB,OC與DE互相垂直平分;又由SSS可判定△ODE≌△CDE.
解答:解:如圖:∵由題意得:OD=OE=CD=EC,
∴四邊形ODCE是菱形;故③正確;
∴OC平分∠AOB,OC與DE互相垂直平分;故①⑤正確;
在△ODE和△CDE中,
OD=CD
DE=DE
OE=CE
,
∴△ODE≌△CDE(SSS);故②正確;
∵當∠AOB=60°時,DE=CD=CE=OA=OE,
此題沒有∠AOB的度數(shù),故④錯誤.
∴其中正確的是:①②③⑤.
故選B.
點評:此題考查了菱形的判定與性質(zhì)以及全等三角形的判定.此題難度適中,注意掌握數(shù)形結(jié)合思想的應用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•新區(qū)二模)在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對稱)變換和平移變換.一次數(shù)學活動課上,老師組織大家利用矩形進行圖形變換的探究活動.
(1)第一小組的同學發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點O,Rt△ADC可以由Rt△ABC經(jīng)過一種變換得到,請你寫出這種變換的過程
將△ABC繞點O旋轉(zhuǎn)180°后可得到△ADC
將△ABC繞點O旋轉(zhuǎn)180°后可得到△ADC


(2)第二小組同學將矩形紙片ABCD按如下順序進行操作:對折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點B落在EF上的點B′處(如圖2-2),這樣能得到∠B′GC的大小,你知道∠B′GC的大小是多少嗎?請寫出求解過程.
(3)第三小組的同學,在一個矩形紙片上按照圖3-1的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進行平移變換,每次均移動AC的長度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,AC長為a,現(xiàn)以AD、AF和AH為三邊構(gòu)成一個新三角形,已知這個新三角形面積小于15
15
,請你幫助該小組求出a可能的最大整數(shù)值.

(4)探究活動結(jié)束后,老師給大家留下了一道探究題:
如圖4-1,已知AA′=BB′=CC′=2,∠AOB′=∠BOC′=∠COA′=60°,請利用圖形變換探究S△AOB′+S△BOC′+S△COA′
3
的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省江陰市九年級5月中考適應性訓練(二模)數(shù)學試卷(解析版) 題型:解答題

在一次數(shù)學活動課上,老師組織大家利用矩形進行圖形變換的探究活動.

(1)第一小組同學將矩形紙片ABCD按如下順序進行操作:對折、展平,得折痕EF(如圖1);再沿GC折疊,使點B落在EF上的點B'處(如圖2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請寫出求解過程.

(2)第二小組的同學,在一個矩形紙片上按照圖3的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進行平移變換,每次均移動AC的長度,得到了△CDE、△EFG和△GHI,如圖4.已知AH=AI,AC長為a,現(xiàn)以AD、AF和AH為三邊構(gòu)成一個新三角形,已知這個新三角形面積小于15,請你幫助該小組求出a可能的最大整數(shù)值.

(3)探究活動結(jié)束后,老師給大家留下了一道探究題:

如圖5,已知AA'=BB'=CC'=2,∠AOB'=∠BOC'=∠COA'=60°,

請利用圖形變換探究S△AOB'+S△BOC'+S△COA'與的大小關(guān)系.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省無錫市新區(qū)九年級二模數(shù)學卷(解析版) 題型:解答題

在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對稱)變換和平移變換.一次數(shù)學活動課上,老師組織大家利用矩形進行圖形變換的探究活動.

(1)第一小組的同學發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點O,Rt△ADC可以由Rt△ABC經(jīng)過一種變換得到,請你寫出這種變換的過程  ▲ 

(2)第二小組同學將矩形紙片ABCD按如下順序進行操作:對折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點B落在EF上的點B'處(如圖2-2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請寫出求解過程.

(3)第三小組的同學,在一個矩形紙片上按照圖3-1的方式剪下△ABC,其中BABC,將△ABC沿著直線AC的方向依次進行平移變換,每次均移動AC的長度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,判斷以AD、AFAH為三邊能否構(gòu)成三角形?若能構(gòu)成,請判斷這個三角形的形狀,若不能構(gòu)成,請說明理由.

(4)探究活動結(jié)束后,老師給大家留下了一道探究題:如圖4-1,已知AA'BB'CC'=4,∠AOB'=∠BOC'=∠COA'=60°,請利用圖形變換探究SAOB'+SBOC'+SCOA'的大小關(guān)系.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

已知∠AOB,按如下步驟作圖:以O(shè)為圓心,任意長為半徑作弧,分別交OA、OB于點D、E;分別以D、E為圓心、OD長為半徑作弧,兩弧在∠AOB的內(nèi)部交于點C;作射線OC,并連接線段DC、EC、DE.小彬根據(jù)作圖得出以下結(jié)論:①OC平分∠AOB;②△ODE≌△CDE;③四邊形ODCE是菱形;④DE=DC;⑤OC與DE互相垂直平分.其中正確的是


  1. A.
    ①③⑤
  2. B.
    ①②③⑤
  3. C.
    ①③④⑤
  4. D.
    ②③④⑤

查看答案和解析>>

同步練習冊答案