如圖所示,求直線l1、l2的交點坐標.

解:由圖象可知l1過(0,5)和(5,0)兩點.
l2過(-2,0)和(0,1).
根據(jù)待定系數(shù)法可得出l1的解析式應該是:y=-x+5,
l2的解析式應該是:y=-x+1,
兩直線的交點滿足方程組
解得:
直線l1、l2的交點坐標(
分析:求兩條直線的交點,要先根據(jù)待定系數(shù)法確定兩條直線的函數(shù)式,從而得出.
點評:本題可用待定系數(shù)法來確定兩條直線的解析式,再聯(lián)立求得交點的坐標.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知兩直線l1,l2分別經(jīng)過點A(1,0),點B(-3,0),并且當兩直線同時相交于y正半軸的點C時,恰好有l(wèi)1⊥l2,經(jīng)過點A、B、C的拋物線的對稱軸與直線l1交于點K,如圖所示.
(1)求點C的坐標,并求出拋物線的函數(shù)解析式;
(2)拋物線的對稱軸被直線l1,拋物線,直線l2和x軸依次截得三條線段,問這三條線段有何數(shù)量關(guān)系?請說明理由;
(3)當直線l2繞點C旋轉(zhuǎn)時,與拋物線的另一個交點為M,請找出使△MCK為等腰三角形的點M,簡述理由,并寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知兩直線l1,l2分別經(jīng)過點A(3,0),點B(-1,0),并且當兩直線同時相交于y負半軸的點C時,恰好有l(wèi)1⊥l2,經(jīng)過點A、B、C的拋物線的對稱軸與直線l2交于點D,如圖所示.
(1)求證:△AOC∽△COB;
(2)求出拋物線的函數(shù)解析式;
(3)當直線l1繞點C順時針旋轉(zhuǎn)α(0°<α<90°)時,它與拋物線的另一個交點為P(x,y),求四邊形APCB面積S關(guān)于x的函數(shù)解析式,并求S的最大值;
(4)當直線l1繞點C旋轉(zhuǎn)時,它與拋物線的另一個交點為E,請找出使△ECD為等腰三角形的點E,并求出點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①所示,直線l1:y=3x+3與x軸交于B點,與直線l2交于y軸上一點A,且l2與x軸的交點為C(1,0).
(1)求證:∠ABC=∠ACB;
(2)如圖②所示,過x軸上一點D(-3,0)作DE⊥AC于E,DE交y軸于F點,交AB于G點,求G點的坐標.
(3)如圖③所示,將△ABC沿x軸向左平移,AC邊與y軸交于一點P(P不同于A、C兩點),過P點作一直線與AB的延長線交于Q點,與x軸交于M點,且CP=BQ,在△ABC平移的過程中,線段OM的長度是否發(fā)生變化?若不變,請求出它的長度;若變化,確定其變化范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,求直線l1、l2的交點坐標.

查看答案和解析>>

同步練習冊答案