【題目】如圖,△ABC中,∠BAC=110°,DE、FG分別為AB、AC的垂直平分線,E、G分別為垂足.
(1)求∠DAF的度數(shù);
(2)如果BC=10cm,求△DAF的周長(zhǎng).
【答案】(1)20°(2)10
【解析】試題分析:(1)先根據(jù)三角形內(nèi)角和定理求出∠B+∠C,再根據(jù)等邊對(duì)等角的性質(zhì)可得∠BAD=∠B,∠CAF=∠C,然后代入數(shù)據(jù)進(jìn)行計(jì)算即可得解;
(2)根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等的性質(zhì)可得AD=BD,AF=CF,然后求出△ADF周長(zhǎng)等于BC,從而得解.
試題解析:(1)∵∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,
∵DE、FGQ分別是AB、AC的垂直平分線,∴AD=BD,AF=CF,∴∠BAD=∠B,∠CAF=∠C,
∴∠DAF=∠BAC﹣∠BAD﹣∠CAF=∠BAC﹣∠B﹣∠C=110°﹣70°=40°;
(2)∵DE、FGQ分別是AB、AC的垂直平分線,∴AD=BD,AF=CF,
∴△ADF周長(zhǎng)=AD+DF+AF=BD+DF+FC=BC,
∵BC=10,∴△APQ周長(zhǎng)=10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】科學(xué)家發(fā)現(xiàn)一種病毒的直徑為0.0043微米,則用科學(xué)記數(shù)法表示為__________微米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD⊥AB,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°,那么BC⊥AB,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,D是AC邊上一動(dòng)點(diǎn),CE⊥BD于E.
(1)如圖(1),若BD平分∠ABC時(shí),①求∠ECD的度數(shù);②延長(zhǎng)CE交BA的延長(zhǎng)線于點(diǎn)F,補(bǔ)全圖形,探究BD與EC的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖(2),過(guò)點(diǎn)A作AF⊥BE于點(diǎn)F,猜想線段BE,CE,AF之間的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下是某校九年級(jí)10名同學(xué)參加學(xué)校演講比賽的統(tǒng)計(jì)表,則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別為()
成績(jī)/分 | 80 | 85 | 90 | 95 |
人數(shù)/人 | 1 | 3 | 4 | 2 |
A.90,87.5B.85,84C.85,90D.90,90
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△ADE中,AB=AD,AC=AE, ∠BAC=∠DAE,BC交
DE于點(diǎn)O,∠BAD=a.
(1)求證:∠BOD=a.
(2)若AO平分∠DAC, 求證:AC=AD.
(3)若∠C=30°,OE交AC于F,且△AOF為等腰三角形,則a= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2).
(1)寫出點(diǎn)A、B的坐標(biāo):A( , )、B( , );
(2)求△ABC的面積;
(3)將△ABC先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到△A′B′C′,畫出△A′B′C′,寫出A′、B′、C′三個(gè)點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com