如圖,△ABC是等邊三角形,D,F(xiàn)分別是BC,AB上的點(diǎn),且BD=AF,AD,CF交于點(diǎn)E,則∠CED=________度.

60
分析:根據(jù)全等三角形的判定定理SAS推知△ABD≌△CAF;然后由全等三角形的對(duì)應(yīng)角相等知∠ACF=∠BAD;最后根據(jù)等邊三角形的性質(zhì)、三角形的外角定理求得∠CED=∠ACF+∠EAC,即
∠CAF=60°.
解答:解:∵△ABC是等邊三角形,
∴∠ABD=∠CAF=60°,AB=CA,
在△ABD和△CAF中,

∴△ABD≌△CAF(SAS),
∴∠ACF=∠BAD(全等三角形的對(duì)應(yīng)角相等);
又∵∠CED=∠ACF+∠EAC(外角定理),
∴∠CED=∠CAF=60°.
故答案是:60.
點(diǎn)評(píng):本題考查了等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì).可圍繞結(jié)論尋找全等三角形,運(yùn)用全等三角形的性質(zhì)判定所對(duì)應(yīng)的角相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,⊙O過(guò)點(diǎn)B,C,且與BA,CA的延長(zhǎng)線分別交于點(diǎn)D,E,弦DF精英家教網(wǎng)∥AC,EF的延長(zhǎng)線交BC的延長(zhǎng)線于點(diǎn)G.
(1)求證:△BEF是等邊三角形;
(2)若BA=4,CG=2,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,△ABC是等邊三角形,過(guò)AB邊上一點(diǎn)D作BC的平行線交AC于E,則△ADE的三個(gè)內(nèi)角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC是等邊三角形,AB=4cm,則BC邊上的高AD等于
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,D為BC邊上的點(diǎn),∠BAD=15°,將△ABD繞點(diǎn)A點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)后到達(dá)△ACE的位置,那么旋轉(zhuǎn)角的度數(shù)是
60°
60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,CE是外角平分線,點(diǎn)D在AC上,連結(jié)BD并延長(zhǎng)與CE交于點(diǎn)E.
(1)直接寫出∠ECF的度數(shù)等于
60
60
°;
(2)求證:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案