解:(1)∵AC⊥BC,且AC=BC,邊EF與邊AC重合,且EF=FP.
∴△ABC與△EFP是全等的等腰直角三角形,
∴∠BAC=∠CAP=45°,AB=AP,
∴∠BAP=90°,
∴AP=AB,AP⊥AB;
(2)延長BO交AP于H點,如圖2
∵∠EPF=45°,
∴△OPC為等腰直角三角形,
∴OC=PC,
∵在△ACP和△BCO中
,
∴△ACP≌△BCO(SAS),
∴AP=BO,∠CAP=∠CBO,
而∠AOH=∠BOC,
∴∠AHO=∠BCO=90°,
∴AP⊥BO,
即BO與AP所滿足的數(shù)量關(guān)系為相等,位置關(guān)系為垂直;
(3)BO與AP所滿足AP=BO,AP⊥BO.理由如下:
延長BO交AP于點H,如圖3,
∵∠EPF=45°,
∴∠CPO=45°,
∴△CPO為等腰直角三角形,
∴OC=PC,
∵在△APC和△OBC中,
,
∴△APC≌△OBC(SAS),
∴AP=BO,∠APC=∠COB,
而∠PBH=∠CBO,
∴∠PHB=∠BCO=90°,
∴BO⊥AP,
即BO與AP所滿足的數(shù)量關(guān)系為相等,位置關(guān)系為垂直.
分析:(1)由于AC⊥BC,且AC=BC,邊EF與邊AC重合,且EF=FP,則△ABC與△EFP是全等的等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得到∠BAC=∠CAP=45°,AB=AP,則∠BAP=90°,于是AP⊥AB;
(2)延長BO交AP于H點,可得到△OPC為等腰直角三角形,則有OC=PC,根據(jù)“SAS”可判斷△ACP≌△BCO,則AP=BO,∠CAP=∠CBO,利用三角形內(nèi)角和定理可得到∠AHO=∠BCO=90°,即AP⊥BO;
(3)BO與AP所滿足的數(shù)量關(guān)系為相等,位置關(guān)系為垂直.證明方法與(2)一樣.
點評:本題考查了全等三角形的判定與性質(zhì):有兩組邊對應(yīng)相等,且它們所夾的角相等,那么這兩個三角形全等;全等三角形的對應(yīng)邊相等.也考查了等腰直角三角形的判定與性質(zhì).