精英家教網 > 初中數學 > 題目詳情
如圖,已知△ABC是銳角三角形,BE、CF分別為∠ABC與∠ACB的角平分線,BE、CF相交于點O,
(1)若∠A=50°,求∠BOC的度數.
(2)∠BOC與∠A有怎樣的關系,并加以證明.
分析:(1)根據三角形的內角和定理求出∠ABC+∠ACB,再根據角平分線的定義求出∠OBC+∠OCB,然后在△OBC中,利用三角形的內角和定理列式進行計算即可得解;
(2)根據(1)的思路證明即可.
解答:解:(1)∵∠A=50°,
∴∠ABC+∠ACB=180°-∠A=180°-50°=130°,
∵BE、CF分別為∠ABC與∠ACB的角平分線,
∴∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∴∠OBC+∠OCB=
1
2
(∠ABC+∠ACB)=
1
2
×130°=65°,
在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-65°=115°;

(2)∠BOC=90°+
1
2
∠A.理由如下:
證明:在△ABC中,∠ABC+∠ACB=180°-∠A,
∵BE、CF分別為∠ABC與∠ACB的角平分線,
∴∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∴∠OBC+∠OCB=
1
2
(∠ABC+∠ACB)=
1
2
(180°-∠A)=90°-
1
2
∠A,
在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-(90°-
1
2
∠A)=90°+
1
2
∠A,
即∠BOC=90°+
1
2
∠A.
點評:本題考查了三角形的內角和定理,角平分線的定義,整體思想的利用是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知△ABC是邊長為4的正三角形,AB在x軸上,點C在第一象限,AC與y軸交于點D,點A精英家教網的坐標為(-1,0).
(1)寫出B,C,D三點的坐標;
(2)若拋物線y=ax2+bx+c經過B,C,D三點,求此拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知△ABC是等邊三角形,AB交⊙O于點D,DE⊥AC于點E.
(1)求證:DE為⊙O的切線.
(2)已知DE=3,求:弧BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知△ABC是等邊三角形,E是AC延長線上一點,選擇一點D,使得△CDE是等邊三角形,如果M是線段AD的中點,N是線段BE的中點,
求證:△CMN是等邊三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•襄城區(qū)模擬)如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF、BE和CF.
(1)求證:△BCE≌△FDC;
(2)判斷四邊形ABDF是怎樣的四邊形,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•奉賢區(qū)二模)如圖,已知△ABC是等邊三角形,點D是BC延長線上的一個動點,以AD為邊作等邊△ADE,過點E作BC的平行線,分別交AB,AC的延長線于點F,G,聯結BE.
(1)求證:△AEB≌△ADC;
(2)如果BC=CD,判斷四邊形BCGE的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案