如圖,在△ABC中,∠C=90°,∠B=15°,DE是AB的中垂線,BE=6,則
AC=
3
3
分析:先由三角形內(nèi)角和定理求出∠BAC的度數(shù),再由線段垂直平分線的性質(zhì)可得出∠BAE的度數(shù),根據(jù)線段垂直平分線的性質(zhì)可求出AE的長及∠AEC的度數(shù),最后由直角三角形的性質(zhì)即可求出AC的長.
解答:解:∵在△ABC中,∠C=90°,∠B=15°,
∴∠BAC=75°,
∵BE=6,DE是線段AB的垂直平分線,
∴AE=BE=6,∠DAE=∠B=15°,
∴∠AEC=2∠B=30°,
∴在Rt△ACD中,AC=
1
2
AE=3.
故填:3.
點(diǎn)評:本題考查的是直角三角形的性質(zhì)及線段垂直平分線的性質(zhì),熟知線段垂直平分的性質(zhì)是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案