如圖,AB是⊙O的直徑,C為⊙O上一點,過點C作CE⊥AB,垂足為E,將△AEC沿AC翻折得到△AFC,AF交⊙O于點D,連接CD、OC.
(1)CF是⊙O的切線嗎?請說明理由.
(2)當(dāng)∠CAE=30°時,判斷四邊形AOCD是何種特殊四邊形,并說明理由.

【答案】分析:(1)由折疊的性質(zhì),可得∠EAC=∠FAC,∠AFC=∠AEC=90°,又由OA=OC,易證得∠ACO+∠FCA=90°,即可證得CF是⊙O的切線;
(2)由∠CAE=30°,根據(jù)折疊的性質(zhì)與圓周角定理,可證得AD∥OC,△AOD是等邊三角形,即可證得四邊形AOCD是菱形.
解答:解:(1)CF是⊙O的切線.理由:
∵將△AEC沿AC翻折得到△AFC,CE⊥AB,
∴∠EAC=∠FAC,∠AFC=∠AEC=90°,
∴∠FAC+∠FCA=90°,
又∵AB是⊙O的直徑,C在⊙O上,
∴OA=OC,
∴∠CAO=∠ACO,
∴∠ACO+∠FCA=90°,
即CF⊥OC,
∴CF是⊙O的切線;

(2)四邊形AOCD是菱形.理由:
連接OD,
∵∠CAE=30°,
∴∠FAO=∠COB=2∠CAE=60°,
∴OC∥AD,
∵OA=OD,
∴△AOD是等邊三角形,
∴AD=OA=OC,
∴AD=OC,
∴四邊形AOCD是平行四邊形,
∴四邊形AOCD是菱形.
點評:此題考查了切線的判定、等腰三角形的性質(zhì)、等邊三角形的判定與性質(zhì)以及菱形的判定.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請你根據(jù)所標(biāo)示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計,π取3.1416)
(1)計算出弧AB所對的圓心角的度數(shù)(精確到0.01度)及弧AB的長度;(精確到0.1cm)
(2)計算出遮雨罩一個側(cè)面的面積;(精確到1cm2
(3)制做這個遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點離水面8m,以水平線AB為x軸,AB的中點為原點建立坐標(biāo)系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習(xí)冊答案