已知矩形ABCD中,AB=2,BC=8,問:在BC邊上是否能找到一個點P,使PA⊥PD?如果存在就求出BP的長;如果不存在,請說明理由.如果長度改變,AB=2,BC=4,結果又如何?

解:①在矩形ABCD中,當AB=2,BC=8時,在BC邊上能找到一個點P,使PA⊥PD.
∵四邊形ABCD是矩形,
∴∠B=∠C=90°,AB=CD=2.
又∵PA⊥PD,
∴∠BPA+∠A=∠BPA+∠CPD=90°,
∴∠A=∠CPD,
∴△ABP∽△PCD,
=,
=
解得,BP=4±2;

②在矩形ABCD中,當AB=2,BC=4時,在BC邊上能找到一個點P,使PA⊥PD.
同理,得△ABP∽△PCD,則=,
∵PC=BC-BP=4-BP,
=
解得,BP=2.
分析:根據(jù)矩形的對邊相等、四邊內角都是直角的性質以及相似三角形(△ABP∽△PCD)的對應邊成比例來求線段BP的長度.
點評:本題考查了矩形的性質和相似三角形的判定與性質.矩形的性質:①平行四邊形的性質矩形都具有;②角:矩形的四個角都是直角.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖所示,已知矩形ABCD中,CD=2,AD=3,點P是AD上的一個動點(與A、D不重合),過點P作PE⊥CP交直線AB于點E,設PD=x,AE=y,
(1)寫出y與x的函數(shù)解析式,并指出自變量的取值范圍;
(2)如果△PCD的面積是△AEP面積的4倍,求CE的長;
(3)是否存在點P,使△APE沿PE翻折后,點A落在BC上?證明你的結論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知矩形ABCD中,AB=4,對角線BD=2AB,且BE平分∠ABD,點P從點D以每秒2個單位沿DB方向向點B運動精英家教網(wǎng),點Q從點B以每秒1個單位沿BA方向向點A運動,設運動時間為t秒,△BPQ的面積為S.
(1)若t=2時,求證:△DBA∽△PBQ;
(2)求S關于t的函數(shù)關系式及S的最大值;
(3)在運動的過程中,△BQM能否成為等腰三角形?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知矩形ABCD中,對角線AC、BD交于O,若∠AOB=120°,BD=8cm,則矩形ABCD的面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知矩形ABCD中,BC=6,AB=8,延長AD到點E,使AE=15,連接BE交AC于點P.
(1)求AP的長;
(2)若以點A為圓心,AP為半徑作⊙A,試判斷線段BE與⊙A的位置關系并說明理由;
(3)已知以點A為圓心,r1為半徑的動⊙A,使點D在動⊙A的內部,點B在動⊙A的外部.
①求動⊙A的半徑r1的取值范圍;
②若以點C為圓心,r2為半徑的動⊙C與動⊙A相切,求r2的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:已知矩形ABCD中,CE∥DF.
(1)請問圖中有哪幾對三角形全等,全部寫出來(不另添輔助線);
(2)請任選其中一對全等三角形給予證明.

查看答案和解析>>

同步練習冊答案