精英家教網 > 初中數學 > 題目詳情

已知在Rt△ABC中,∠C=90°,cosB=數學公式,則tanA的值為


  1. A.
    2
  2. B.
    數學公式
  3. C.
    數學公式
  4. D.
    數學公式
D
分析:首先根據銳角三角函數的定義,結合勾股定理,用同一個未知數表示直角三角形的三邊;再根據銳角三角函數的定義求解.
解答:由cosB=,可設a=x,c=2x,由勾股定理得:b==x,
∴tanA===
故選:D.
點評:此題考查的知識點是互余兩角三角函數的關系,求銳角的三角函數值的方法:利用銳角三角函數的定義,通過設參數的方法求三角函數值,或者利用同角(或余角)的三角函數關系式求三角函數值.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知在Rt△ABC中,∠ACB=90°,CD是AB上的中線,BC=2
5
,cos∠ACD=
2
3
,則CD=
 

查看答案和解析>>

科目:初中數學 來源: 題型:

12、已知在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,那么BC=
8
cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知在Rt△ABC中,∠ACB=90°,AB=4,分別以AC,BC為直徑作半圓,面積分別記為S1,S2,則S1+S2的值等于( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(1)已知在Rt△ABC中,∠C=90°,sinA=
513
,求tanB;
(2)如圖,小方在五月一日假期中到郊外放風箏,風箏飛到C 處時的線長為20米,此時小方正好站在A處,并測得∠CBD=60°,牽引底端B離地面1.5米,求此時風箏離地面的高度.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,點E從點A出發(fā)沿AB以每秒1cm的速度向點B運動,同時點D從點C出發(fā)沿CA以每秒2cm的速度向點A運動,運動時間為t秒(0<t<6),過點D作DF⊥BC于點F.
(1)如圖①,在D、E運動的過程中,四邊形AEFD是平行四邊形,請說明理由;
(2)連接DE,當t為何值時,△DEF為直角三角形?
(3)如圖②,將△ADE沿DE翻折得到△A′DE,試問當t為何值時,四邊形 AEA′D為菱形?

查看答案和解析>>

同步練習冊答案