【題目】如圖所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,AB與EC交于點(diǎn)D.問:
(1)EC與BF有什么大小關(guān)系?并說明理由.
(2)EC與BF的位置關(guān)系是__________.(直接寫出結(jié)論,不證明)
【答案】(1)EC=BF;理由見解析;(2)EC⊥BF.
【解析】
(1)欲證明EC=BF,只要證明△AEC≌△ABF即可;
(2)依據(jù)AC交BF于D,利用“8字型”證明∠ABF+∠BDM=90°即可解決問題.
解:(1)EC=BF
理由:∵AE⊥AB,AF⊥AC,
∴∠BAE=∠CAF=90°,
∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,
在△ABF和△AEC中,
∵
∴△ABF≌△AEC(SAS),
∴EC=BF;
(2)根據(jù)(1),可得△ABF≌△AEC,
∴∠AEC=∠ABF,
∵AE⊥AB,
∴∠BAE=90°,
∴∠AEC+∠ADE=90°,
∵∠ADE=∠BDM(對頂角相等),
∴∠ABF+∠BDM=90°,
在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,
∴EC⊥BF.
故答案為:EC⊥BF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列結(jié)論正確的個(gè)數(shù)是( ) ①m+n>0;②m﹣n>0;③mn<0;④|m﹣n|=m﹣n.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一組有規(guī)律的圖案,它們是由邊長相同的正方形和正三角形拼接而成,第①個(gè)圖案有4個(gè)三角形和1個(gè)正方形,第②個(gè)圖案有7個(gè)三角形和2個(gè)正方形,第③個(gè)圖案有10個(gè)三角形和3個(gè)正方形,…依此規(guī)律,第n個(gè)圖案有 ____________個(gè)三角形(用含n的代數(shù)式表示);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD和正方形BEFG平放在一起.
(1)若兩正方形的面積分別是16和9,直接寫出邊AE的長為 .
(2)①設(shè)正方形ABCD的邊長為a,正方形BEFG的邊長為b,求圖中陰影部分的面積(用含a和b的代數(shù)式表示)
②在①的條件下,如果a+b=10,ab=16,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鈍角三角形ABC中,∠BAC>90°,AB=AC,∠ACB=α,過點(diǎn)A的直線l交BC邊于點(diǎn)D.點(diǎn)E在直線l上,且BC=BE.,點(diǎn)E在AD延長線上.
①當(dāng)α=30°,點(diǎn)D恰好為BC中點(diǎn)時(shí),補(bǔ)全圖1直接寫出∠BAE= °,
∠BEA= °;
②如圖2,若∠BAE=2α,求∠BEA的度數(shù)(用含α的代數(shù)式表示);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某班全體學(xué)生外出時(shí)選擇乘車、步行、騎車人數(shù)的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(兩圖都不完整),則下列結(jié)論中正確的是( )
A. 步行人數(shù)為30人 B. 騎車人數(shù)占總?cè)藬?shù)的10%
C. 該班總?cè)藬?shù)為50人 D. 乘車人數(shù)是騎車人數(shù)的40%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)長方形運(yùn)動(dòng)場被分隔成、、、、共個(gè)區(qū), 區(qū)是邊長為的正方形, 區(qū)是邊長為的正方形.
(1)列式表示每個(gè)區(qū)長方形場地的周長,并將式子化簡;
(2)列式表示整個(gè)長方形運(yùn)動(dòng)場的周長,并將式子化簡;
(3)如果, ,求整個(gè)長方形運(yùn)動(dòng)場的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平移一次函數(shù)y=2x﹣4的圖象過點(diǎn)(﹣2,1)后的圖象為l1.
(1)求圖象l1對應(yīng)的函數(shù)表達(dá)式,并畫出圖象l1;
(2)求一次函數(shù)y=﹣2x+4的圖象l2與l1及x軸所圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一項(xiàng)工程,甲乙兩人合作需要8天完成任務(wù),若甲單獨(dú)做需要12天完成任務(wù).
(1)若甲乙兩人一起做6天,剩下的由甲單獨(dú)做,還需要幾天完成?
(2)若甲乙兩人一起做4天,剩下的由乙單獨(dú)做,還需要幾天完成?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com