如圖.直角梯形OABC的直角頂點(diǎn)O是坐標(biāo)原點(diǎn),邊OA,OC分別在x軸、y軸的正半軸上.OA∥BC,OA=4數(shù)學(xué)公式,OC=數(shù)學(xué)公式數(shù)學(xué)公式,
∠OAB=45°,D是BC上一點(diǎn),CD=數(shù)學(xué)公式數(shù)學(xué)公式.E、F分別是線段OA、AB上的兩動(dòng)點(diǎn),且始終保持∠DEF=45°,設(shè)OE=x,AF=y.
(1)AB=________,BC=________,∠DOE=________;
(2)證明△ODE∽△AEF,并確定y與x之間的函數(shù)關(guān)系;
(3)當(dāng)AF=EF時(shí),將△AEF沿EF折疊,得到△A′EF,求△A′EF與五邊形OEFBC重疊部分的面積.

解:(1)過B作BM⊥OA于M,
則四邊形CBMO是矩形,
∵∠BAO=45°,
∴BC=OM,OC=BM=MA=,
由勾股定理得:AB==3,
BC=OA-AM=,
∵CD=OC,
∴∠COD=∠CDO=45°,
∴∠DOE=45°,
故答案為:3,,45°.

(2)證明:∵∠BAO=∠DOE=45°,
∵∠ODE=∠DEA-45°,∠FEA=∠DEA-45°,
∴∠ODE=∠FEA,
∴△ODE∽△AEF,
=,
=,
∴y=-x2+x,
即y與x的函數(shù)關(guān)系式是y=-x2+x.

(3)當(dāng)EF=AF時(shí),如圖,∠FAE=∠FEA=∠DEF=45°,
∴△AEF是等腰直角三角形,D在A'E上,A'E⊥OA,B在A'F上,A'F⊥EF,
∴△A'EF與五邊形OEBC重疊部分的面積為四邊形EFBD的面積,
∵AE=OA-OE=OA-CD=4-=,
∴AF=EF=÷=
∴S△AEF=EF•AF=×=,
∴S梯形AEDB=(BD+AE)•DE=×(+)×=
∴S四邊形BDEF=S梯形AEDB-S△AEF=-=
分析:(1)過B作BM⊥OA于M,證四邊形CBMO是矩形,推出CB=OM,OC=BM=AM,即可求出答案;
(2)證△ODE∽△AEF,根據(jù)相似三角形的性質(zhì)得到比例式,即可求出答案;
(3)若AF=EF,此時(shí)△AEF是等腰Rt△,A′在AB的延長線上,重合部分是四邊形EDBF,其面積可由梯形ABDE與△AEF的面積差求得.
點(diǎn)評(píng):本題主要考查對(duì)直角梯形,相似三角形的性質(zhì)和判定,矩形的性質(zhì)和判定,三角形的面積,坐標(biāo)與圖形性質(zhì),翻折變換等知識(shí)點(diǎn)的理解和掌握,能綜合運(yùn)用這些性質(zhì)進(jìn)行計(jì)算和推理是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角梯形OABC的直角頂點(diǎn)O是坐標(biāo)原點(diǎn),邊OA,OC分別在x軸、y軸的正半軸上,OA∥BC,D是BC上一點(diǎn),BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動(dòng)點(diǎn),且始終保持∠DEF=45°.
精英家教網(wǎng)
(1)直接寫出D點(diǎn)的坐標(biāo);
(2)設(shè)OE=x,AF=y,試確定y與x之間的函數(shù)關(guān)系;
(3)將△AEF沿一條邊翻折,翻折前后兩個(gè)三角形組成的四邊形能否成為菱形?若能,請直接寫出符合條件的x值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角梯形OABF中,∠OAB=∠B=90°,A點(diǎn)在x軸上,雙曲線y=
k
x
過點(diǎn)F,與AB交于E點(diǎn),連EF,若
BF
OA
=
2
3
,S△BEF=4,則k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角梯形OABC中,∠OAB=∠B=90°,A點(diǎn)在x軸上,雙曲線y=
kx
過點(diǎn)C和AB中點(diǎn)D,若S梯形OABC=6,則該雙曲線的解析式為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角梯形OABC的直角頂點(diǎn)O是坐標(biāo)原點(diǎn),邊OA,OC分別在x軸、y軸的正半軸上,OA∥BC,D精英家教網(wǎng)是BC上一點(diǎn),BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動(dòng)點(diǎn),且始終保持∠DEF=45°.
(1)直接寫出D點(diǎn)的坐標(biāo);
(2)設(shè)OE=x,AF=y,試確定y與x之間的函數(shù)關(guān)系;
(3)當(dāng)△AEF是等腰三角形時(shí),將△AEF沿EF折疊,得到△A'EF,求△A'EF與五邊形OEFBC重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖.直角梯形OABC的直角頂點(diǎn)O是坐標(biāo)原點(diǎn),邊OA,OC分別在x軸、y軸的正半軸上.OA∥BC,OA=4
2
,OC=
3
2
2

∠OAB=45°,D是BC上一點(diǎn),CD=
3
2
2
.E、F分別是線段OA、AB上的兩動(dòng)點(diǎn),且始終保持∠DEF=45°,設(shè)OE=x,AF=y.
(1)AB=
 
,BC=
 
,∠DOE=
 
;
(2)證明△ODE∽△AEF,并確定y與x之間的函數(shù)關(guān)系;
(3)當(dāng)AF=EF時(shí),將△AEF沿EF折疊,得到△A′EF,求△A′EF與五邊形OEFBC重疊部分的面積.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案