已知:如圖所示,拋物線y=-x2+bx+c與x軸的兩個(gè)交點(diǎn)分別為A(1,0),B(3,0).
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)P在該拋物線上滑動(dòng),且滿足條件S△PAB=1的點(diǎn)P有幾個(gè)?并求出所有點(diǎn)P的坐標(biāo);
(3)設(shè)拋物線交y軸于點(diǎn)C,問該拋物線對(duì)稱軸上是否存在點(diǎn)M,使得△MAC的周長最?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】分析:(1)將A(1,0),B(3,0)代入拋物線y=-x2+bx+c中,列方程組可求拋物線解析式;
(2)由于AB=3-1=2,而S△PAB=1,故△PAB中,AB邊上的高為1,即P點(diǎn)縱坐標(biāo)為±1,代入拋物線解析式可求P點(diǎn)橫坐標(biāo);
(3)過點(diǎn)C作拋物線的對(duì)稱軸的對(duì)稱點(diǎn)C',根據(jù)拋物線的對(duì)稱性求得C′(4,-3),連接直線AC′,求直線AC′的解析式,直線AC′與對(duì)稱軸的交點(diǎn)即為所求點(diǎn)M.
解答:解:(1)依題意有,
∴b=4,c=-3,
∴拋物線解析式為y=-x2+4x-3;

(2)如圖,設(shè)P(x,y)
∵AB=2,S△PAB=1
×2×|y|=1
∴y=±1
當(dāng)y=1時(shí),x1=x2=2,
當(dāng)y=-1時(shí),x=2±,
∴滿足條件的點(diǎn)P有三個(gè)坐標(biāo)分別為(2,1),(2+,-1),(2-,-1);

(3)存在.
過點(diǎn)C作拋物線的對(duì)稱軸的對(duì)稱點(diǎn)C',
∵點(diǎn)C(0,-3),對(duì)稱軸為x=2,
∴C′(4,-3),
設(shè)直線AC′的解析式為y=kx+b,

∴k=-1,b=1,
∴直線AC′的解析式為y=-x+1,
直線AC′與對(duì)稱軸x=2的交點(diǎn)為(2,-1),即M(2,-1),
∴存在點(diǎn)M(2,-1),可使△AMC的周長最。
點(diǎn)評(píng):本題考查了二次函數(shù)的綜合運(yùn)用.關(guān)鍵是利用待定系數(shù)法求拋物線解析式,根據(jù)面積公式求P點(diǎn)縱坐標(biāo),根據(jù)拋物線解析式求P點(diǎn)橫坐標(biāo),根據(jù)拋物線的對(duì)稱性求三角形的最小周長.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線y=(1-a)x2+8x+b的圖象的一部分如圖所示,拋物的頂點(diǎn)在第一象限,且經(jīng)過點(diǎn)A(0,-7)和點(diǎn)B.
(1)求a的取值范圍;
(2)若OA=2OB,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第6章《二次函數(shù)》中考題集(48):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知拋物線y=(1-a)x2+8x+b的圖象的一部分如圖所示,拋物的頂點(diǎn)在第一象限,且經(jīng)過點(diǎn)A(0,-7)和點(diǎn)B.
(1)求a的取值范圍;
(2)若OA=2OB,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2005•棗莊)已知拋物線y=(1-a)x2+8x+b的圖象的一部分如圖所示,拋物的頂點(diǎn)在第一象限,且經(jīng)過點(diǎn)A(0,-7)和點(diǎn)B.
(1)求a的取值范圍;
(2)若OA=2OB,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年山東省棗莊市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•棗莊)已知拋物線y=(1-a)x2+8x+b的圖象的一部分如圖所示,拋物的頂點(diǎn)在第一象限,且經(jīng)過點(diǎn)A(0,-7)和點(diǎn)B.
(1)求a的取值范圍;
(2)若OA=2OB,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年山東省棗莊市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•棗莊)已知拋物線y=(1-a)x2+8x+b的圖象的一部分如圖所示,拋物的頂點(diǎn)在第一象限,且經(jīng)過點(diǎn)A(0,-7)和點(diǎn)B.
(1)求a的取值范圍;
(2)若OA=2OB,求拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊答案