作業(yè)寶如圖,在△ABC中,AB=AC=5,BC=6,點(diǎn)D為BC邊上一動(dòng)點(diǎn)(不與點(diǎn)B重合),以D為圓心,DC的長(zhǎng)為半徑作⊙D.當(dāng)⊙D與AB邊相切時(shí),BD的長(zhǎng)為_(kāi)_______.


分析:如圖,假設(shè)AB與⊙D相切于點(diǎn)F,連接FD.通過(guò)相似三角形△BFD∽△BGA的對(duì)應(yīng)邊成比例得到.DF=6-BD,由勾股定理求得AG=4,BA=5,所以把相關(guān)線段的長(zhǎng)度代入便可以求得BD的長(zhǎng)度.
解答:如圖,假設(shè)AB與⊙D相切于點(diǎn)F,連接FD,則DF=DC,∠BFD=90°.
過(guò)點(diǎn)A作AG⊥BC于點(diǎn)G,則∠BGA=90°.
∴在△BFD和△BGA中,∠BFD=∠BGA=90°,∠B=∠B,
∴△BFD∽△BGA,

又∵AB=AC=5,BC=6,AG⊥BC
∴BG=BC=3,AG==4,
,
解得BD=,
故答案為:
點(diǎn)評(píng):本題考查了切線的性質(zhì)、相似三角形的判定和性質(zhì)以及勾股定理的運(yùn)用,解題的關(guān)鍵是添加輔助線構(gòu)造直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案