如圖1,點(diǎn)O是邊長為1的等邊△ABC內(nèi)的任一點(diǎn),設(shè)∠AOB=°,∠BOC=°

(1)將△BOC繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)60°得△ADC,連結(jié)OD,如圖2所示. 求證:OD=OC。

(2)在(1)的基礎(chǔ)上,將△ABC繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)60°得△EAC,連結(jié)DE,如圖3所示. 求證:OA=DE

(3)在(2)的基礎(chǔ)上, 當(dāng)、滿足什么關(guān)系時(shí),點(diǎn)B、O、D、E在同一直線上。并直接寫出AO+BO+CO的最小值。

(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得CO=CD,∠DOC=60°,即得△COD是等邊三角形,問題得證;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得△ADC≌△BOC,△EAC≌△ABC,則可得AD=BO,∠DAC=∠OBC,EA=AB,∠EAC=∠ABC,即可證得△EAD≌△ABO,問題得證;(3)

解析試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得CO=CD,∠DOC=60°,即得△COD是等邊三角形,問題得證;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得△ADC≌△BOC,△EAC≌△ABC,則可得AD=BO,∠DAC=∠OBC,EA=AB,∠EAC=∠ABC,即可證得△EAD≌△ABO,問題得證;
(3)根據(jù)全等三角形的性質(zhì)可得∠ADC=∠BOC=,∠EDA=∠AOB=,即得∠CDE=,由△COD是等邊三角形可得∠COD=∠CDO=60°,若點(diǎn)B、O、D、E在同一直線上,則∠BOC=∠CDE=120°,即,得 ,從而可以求得結(jié)果.
(1)∵△BOC繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)60°得△ADC
∴CO=CD,∠DOC=60°
∴△COD是等邊三角形 
∴OD=OC;
(2)∵△BOC繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)60°得△ADC
△ABC繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)60°得△EAC
∴△ADC≌△BOC,△EAC≌△ABC
∴AD=BO,∠DAC=∠OBC,EA=AB,∠EAC=∠ABC
∴∠EAC-∠DAC=∠ABC-∠OBC即∠DAE=∠OBA
∴△EAD≌△ABO  
∴OA=DE;
(3)∵△ADC≌△BOC,△EAD≌△ABO 
∴∠ADC=∠BOC=,∠EDA=∠AOB=
∴∠CDE=  
∵△COD是等邊三角形 
∴∠COD=∠CDO=60°
若點(diǎn)B、O、D、E在同一直線上,則∠BOC=∠CDE=120°
,得 
AO+BO+CO的最小值為
考點(diǎn):旋轉(zhuǎn)問題的綜合題
點(diǎn)評(píng):此類問題是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,點(diǎn)O是邊長為1的等邊△ABC內(nèi)的任一點(diǎn),設(shè)∠AOB=α°,∠BOC=β°

(1)將△BOC繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)60°得△ADC,連結(jié)OD,如圖2所示.求證:OD=OC.
(2)在(1)的基礎(chǔ)上,將△ABC繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)60°得△EAC,連結(jié)DE,如圖3所示.求證:OA=DE
(3)在(2)的基礎(chǔ)上,當(dāng)α、β滿足什么關(guān)系時(shí),點(diǎn)B、O、D、E在同一直線上.并直接寫出AO+BO+CO的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖,它可以看作是邊長為a,b,c的兩直角三角形成,其中A,B,C三點(diǎn)在同直線上,請(qǐng)從面積出發(fā),寫出一個(gè)a,b,c的等式;(要過程)
(2)請(qǐng)用四個(gè)同樣的直角三角形拼出另一個(gè)圖形驗(yàn)證的等式,并寫出驗(yàn)證過程.
(3)如果a+b=8,ab=14,求出c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江杭州余杭九年級(jí)下學(xué)期階段性測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1,點(diǎn)O是邊長為1的等邊△ABC內(nèi)的任一點(diǎn),設(shè)∠AOB=°,∠BOC=°

(1)將△BOC繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)60°得△ADC,連結(jié)OD,如圖2所示. 求證:OD=OC。

(2)在(1)的基礎(chǔ)上,將△ABC繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)60°得△EAC,連結(jié)DE,如圖3所示. 求證:OA=DE

(3)在(2)的基礎(chǔ)上, 當(dāng)、滿足什么關(guān)系時(shí),點(diǎn)B、O、D、E在同一直線上。并直接寫出AO+BO+CO的最小值。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年浙江省杭州市中考數(shù)學(xué)預(yù)測(cè)試卷(解析版) 題型:解答題

如圖1,點(diǎn)O是邊長為1的等邊△ABC內(nèi)的任一點(diǎn),設(shè)∠AOB=α°,∠BOC=β°

(1)將△BOC繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)60°得△ADC,連結(jié)OD,如圖2所示.求證:OD=OC.
(2)在(1)的基礎(chǔ)上,將△ABC繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)60°得△EAC,連結(jié)DE,如圖3所示.求證:OA=DE
(3)在(2)的基礎(chǔ)上,當(dāng)α、β滿足什么關(guān)系時(shí),點(diǎn)B、O、D、E在同一直線上.并直接寫出AO+BO+CO的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案