如圖,ABCD是正方形,點(diǎn)G是BC上的任意一點(diǎn),DE⊥AG于E,BF∥DE,交AG于F.
求證:AF=BF+EF.

【答案】分析:因?yàn)锳F=AE+EF,則可以通過證明△ABF≌△DAE,從而得到AE=BF,便得到了AF=BF+EF.
解答:證明:∵ABCD是正方形,
∴AD=AB,∠BAD=90°(1分)
∵DE⊥AG,
∴∠DEG=∠AED=90°
∴∠ADE+∠DAE=90°
又∵∠BAF+∠DAE=∠BAD=90°,
∴∠ADE=∠BAF.(2分)
∵BF∥DE,
∴∠AFB=∠DEG=∠AED.(3分)
在△ABF與△DAE中,
∴△ABF≌△DAE(AAS).(4分)
∴BF=AE.(5分)
∵AF=AE+EF,
∴AF=BF+EF.(6分)
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)正方形的性質(zhì)及全等三角形的判定的掌握情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3;拋物線y=-x2+bx+c經(jīng)過坐標(biāo)原點(diǎn)O和x軸上另一點(diǎn)E(4,0)
(1)當(dāng)x取何值時(shí),該拋物線取最大值?該拋物線的最大值是多少?
(2)將矩形ABCD以每秒1個(gè)單位長(zhǎng)度的速度從圖1所示的位置沿x軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動(dòng).設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖2所示).
①當(dāng)t=
114
時(shí),判斷點(diǎn)P是否在直線ME上,并說明理由;
②以P、N、C、D為頂點(diǎn)的多邊形面積是否可能為5?若有可能,求出此時(shí)N點(diǎn)的坐標(biāo);若無可能,請(qǐng)說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長(zhǎng)是關(guān)于x的一元二次方程精英家教網(wǎng)x2-7x+12=0的兩個(gè)根,且OA>OB.
(1)則點(diǎn)C的坐標(biāo)是
 
,點(diǎn)D的坐標(biāo)是
 
;
(2)若將此平行四邊形ABCD沿x軸正方向向右平移3個(gè)單位,沿y軸正方向向上平移2個(gè)單位,則點(diǎn)C的坐標(biāo)是
 
,點(diǎn)D的坐標(biāo)是
 
;
(3)若將平行四邊形ABCD平移到第一象限后,點(diǎn)B的坐標(biāo)是(a,b),則點(diǎn)C的坐標(biāo)是
 
,點(diǎn)D的坐標(biāo)是
 
;
(4)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在上圖的直線AB上,并且在第一、第二象限內(nèi)是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)直接寫出F點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•鞍山)如圖:方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的小正方形,四邊形ABCD和四邊形A1B1C1D1的頂點(diǎn)均在格點(diǎn)上,以點(diǎn)O為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系.
(1)畫出四邊形ABCD沿y軸正方向平移4格得到的四邊形A2B2C2D2,并求出點(diǎn)D2的坐標(biāo).
(2)畫出四邊形A1B1C1D1繞點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)90°后得到的四邊形A3B3C3D3,并求出A2、B3之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

課題學(xué)習(xí):
(1)如圖1,E、F、G、H分別是正方形ABCD各邊的中點(diǎn),則四邊形EFGH是
正方
正方
形,正方形ABCD的面積記為S1,EFGH的面積為S2,則S1和S2間的數(shù)量關(guān)系:
S1=2S2
S1=2S2
;
(2)如圖2,E、F、G、H分別是菱形ABCD各邊的中點(diǎn),則四邊形EFGH是
形,菱形ABCD的面積為S1,EFGH的面積為S2,則S1和S2間的數(shù)量關(guān)系:
S1=2S2
S1=2S2

(3)如圖3,梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD,垂足為O,E、F、G、H分別為各邊的中點(diǎn).四邊形EFGH是
形;若梯形ABCD的面積記為S1,四邊形EFGH的面積記為S2,由圖可猜想S1和S2間的數(shù)量關(guān)系為:
S1=2S2
S1=2S2
;
(4)如圖4,E、G分別是平行四邊形ABCD的邊AB、DC的中點(diǎn),H、F分別是邊形AD、BC上的點(diǎn),且四邊形EFGH為平行四邊形,若把平行四邊形ABCD的面積記為S1,把平行四邊形形EFGH的面積記為S2,試猜想S1和S2間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖(1),已知,矩形ABCD的邊AD=3,對(duì)角線長(zhǎng)為5,將矩形ABCD置于直角坐標(biāo)系內(nèi),點(diǎn)C與原點(diǎn)O重合,且反比例函數(shù)的圖象的一個(gè)分支位于第一象限.
①求圖(1)中,點(diǎn)A的坐標(biāo)是多少?
②若矩形ABCD從圖(1)的位置開始沿x軸的正方向移動(dòng),每秒移動(dòng)1個(gè)單位,1秒后點(diǎn)A剛好落在反比例函數(shù)的圖象上,如圖(2),求反比例函數(shù)的表達(dá)式.
③矩形ABCD繼續(xù)向x軸的正方向移動(dòng),AB、AD與反比例函數(shù)圖象分別交于P、Q兩點(diǎn),如圖(3),設(shè)移動(dòng)總時(shí)間為t(1<t<5),分別寫出△PBC的面積S1、△QDC的面積S2與t的函數(shù)關(guān)系式,并求當(dāng)t為何值時(shí),S2=
107
S1?

查看答案和解析>>

同步練習(xí)冊(cè)答案