(2011•舟山)如圖,AB是半圓直徑,半徑OC⊥AB于點(diǎn)O,AD平分∠CAB交弧BC于點(diǎn)D,連接CD、OD,給出以下四個(gè)結(jié)論:①AC∥OD;②CE=OE;③△ODE∽△ADO;④2CD2=CE•AB.其中正確結(jié)論的序號(hào)是_______________
①④解析:
證明:①∵AB是半圓直徑,
∴AO=OD,
∴∠OAD=∠ADO,
∵AD平分∠CAB交弧BC于點(diǎn)D,
∴∠CAD=∠DAO=∠CAB,
∴∠CAD=∠ADO,
∴AC∥OD,
∴①正確.
②∵△CED與△AED不全等,
∴CE≠OE,
∴②錯(cuò)誤.
③∵在△ODE和△ADO中,只有∠ADO=∠EDO,其它兩角都不相等,
∴不能證明△ODE和△ADO全等,
∴③錯(cuò)誤;
④∵AD平分∠CAB交弧BC于點(diǎn)D,
∴∠CAD=×45°=22.5°,
∴∠COD=45°,
∵AB是半圓直徑,
∴OC=OD,
∴∠OCD=∠ODC=67.5°
∵∠CAD=∠ADO=22.5°(已證),
∴∠CDE=∠ODC﹣∠ADO=67.5°﹣25°=45°,
∴△CED∽△COD,
=,
∴CD2=OD•CE=AB•CE,
∴2CD2=CE•AB.
∴④正確.
綜上所述,只有①④正確.
故答案為:①④.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•舟山)如圖,△ABC中,以BC為直徑的圓交AB于點(diǎn)D,∠ACD=∠ABC.
(1)求證:CA是圓的切線;
(2)若點(diǎn)E是BC上一點(diǎn),已知BE=6,tan∠ABC=,tan∠AEC=,求圓的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•舟山)如圖,在△ABC中,AB=AC,∠A=40°,則△ABC的外角∠BCD= ___________________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•舟山)如圖,邊長(zhǎng)為4的等邊△ABC中,DE為中位線,則四邊形BCED的面積為( 。
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(四川成都卷)數(shù)學(xué)解析版 題型:填空題

(2011•舟山)如圖,已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)(﹣1,0),(1,﹣2),當(dāng)y隨x的增大而增大時(shí),x的取值范圍是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(四川成都卷)數(shù)學(xué)解析版 題型:解答題

(2011•舟山)如圖,已知直線y=﹣2x經(jīng)過(guò)點(diǎn)P(﹣2,a),點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)P′在反比例函數(shù)(k≠0)的圖象上.
(1)求a的值;
(2)直接寫出點(diǎn)P′的坐標(biāo);
(3)求反比例函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案