將拋物線 向右平移2個單位后,所得拋物線的頂點坐標(biāo)是_________;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,已知拋物線y=ax2+bx+c經(jīng)過坐標(biāo)原點,與x軸的另一個交點為A,且頂點M坐標(biāo)為(1,2),
(1)求該拋物線的解析式;
(2)現(xiàn)將它向右平移m(m>0)個單位,所得拋物線與x軸交于C、D兩點,與原拋物線交于點P,△CDP的面積為S,求S關(guān)于m的關(guān)系式;
(3)如圖②,以點A為圓心,以線段OA為半徑畫圓,交拋物線y=ax2+bx+c的對稱軸于點B,連接AB,若將拋物線向右平移m(m>0)個單位后,B點的對應(yīng)點為B′,A點的對應(yīng)點為A′點,且滿足四邊形BAA′B′為菱形,平移后的拋物線的對稱軸與菱形的對角線BA′交于點E,在x軸上是否存在一點F,使得以E、F、A′為頂點的三角形與△BAE相似?若存在,求出F點坐標(biāo);若不存在,說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線①經(jīng)過點A(-1,0)、B(4,5)、C(0,-3),其對稱軸與直線BC交于點P.
(1)求拋物線①的表達式及點P的坐標(biāo);
(2)將拋物線①向右平移1個單位后再作上下平移,得到的拋物線②恰好過點P,求上下平移的方向和距離;
(3)設(shè)拋物線②的頂點為D,與y軸的交點為E,試求∠EDP的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,將2個正方形并排組成矩形OABC,使點B落到x軸的正半軸上且OC=
5

(1)求點C的坐標(biāo);
(2)若拋物線y=ax2+
5
2
x
過矩形OABC的頂點C.
①求a的值;
②將拋物線向右平移m個單位,使平移后得到的拋物線與線段CB無交點,求m的取值范圍.(直接寫出答案即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田)如圖,拋物線y=ax2+bx+c的開口向下,與x軸交于點A(-3,0)和點B(1,0).與y軸交于點C,頂點為D.
(1)求頂點D的坐標(biāo).(用含a的代數(shù)式表示);
(2)若△ACD的面積為3.
①求拋物線的解析式;
②將拋物線向右平移,使得平移后的拋物線與原拋物線交于點P,且∠PAB=∠DAC,求平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•桂林)已知拋物線的頂點為(0,4)且與x軸交于(-2,0),(2,0).

(1)直接寫出拋物線解析式;
(2)如圖,將拋物線向右平移k個單位,設(shè)平移后拋物線的頂點為D,與x軸的交點為A、B,與原拋物線的交點為P.
①當(dāng)直線OD與以AB為直徑的圓相切于E時,求此時k的值;
②是否存在這樣的k值,使得點O、P、D三點恰好在同一條直線上?若存在,求出k值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案