精英家教網 > 初中數學 > 題目詳情
精英家教網如圖,點A在y軸上,點B在x軸上,且OA=OB=1,經過原點O的直線l交線段AB于點C,過C作OC的垂線,與直線x=1相交于點P,現將直線L繞O點旋轉,使交點C從A向B運動,但C點必須在第一象限內,并記AC的長為t,分析此圖后,對下列問題作出探究:
(1)當△AOC和△BCP全等時,求出t的值;
(2)通過動手測量線段OC和CP的長來判斷它們之間的大小關系并證明你得到的結論;
(3)①設點P的坐標為(1,b),試寫出b關于t的函數關系式和變量t的取值范圍.
②求出當△PBC為等腰三角形時點P的坐標.
分析:(1)△AOC和△BCP全等,則AO=BC=1,又∵AB=
2
,t=AB-BC=
2
-1;
(2)過點C作x軸的平行線,交OA與直線BP于點T、H,證△OTC≌△CHP即可;
(3)根據題意可直接得出b=1-
2
t;當t=0或1時,△PBC為等腰三角形,即P(1,1),P(1,1-
2
),但t=0時,點C不在第一象限,所以不符合題意.
解答:解:(1)△AOC和△BCP全等,則AO=BC=1,
又AB=
2

所以t=AB-BC=
2
-1;

(2)OC=CP.
證明:過點C作x軸的平行線,交OA與直線BP于點T、H.
∵PC⊥OC,
∴∠OCP=90°,
∵OA=OB=1,
∴∠OBA=45°,
∵TH∥OB,
∴∠BCH=45°,又∠CHB=90°,
∴△CHB為等腰直角三角形,
∴CH=BH,
∵∠AOB=∠OBH=∠BHT=90°,
∴四邊形OBHT為矩形,∴OT=BH,精英家教網
∴OT=CH,
∵∠TCO+∠PCH=90°,
∠CPH+∠PCH=90°,
∴∠TCO=∠CPH,
∵HB⊥x軸,TH∥OB,
∴∠CTO=∠THB=90°,TO=HC,∠TCO=∠CPH,
∴△OTC≌△CHP,
∴OC=CP;

(3)①∵△OTC≌△CHP,
∴CT=PH,
∴PH=CT=AT=AC•cos45°=
2
2
t,
∴BH=OT=OA-AT=1-
2
2
t,
∴BP=BH-PH=1-
2
t,
b=1-
2
t
;(0<t<
2

②t=0時,△PBC是等腰直角三角形,但點C與點A重合,不在第一象限,所以不符合,
PB=BC,則
2
-t=|1-
2
t|,
解得t=1或t=-1(舍去),
∴當t=1時,△PBC為等腰三角形,
即P點坐標為:P(1,1-
2
).
點評:主要考查了函數和幾何圖形的綜合運用.解題的關鍵是會靈活的運用函數的性質和點的意義表示出相應的線段的長度,再結合三角形全等和等腰三角形的性質求解.試題中貫穿了方程思想和數形結合的思想,請注意體會.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知,如圖,點M在x軸上,以點M為圓心,2.5長為半徑的圓交y軸于A、B兩點,交x軸于C(精英家教網x1,0)、D(x2,0)兩點,(x1<x2),x1、x2是方程x(2x+1)=(x+2)2的兩根.
(1)求點C、D及點M的坐標;
(2)若直線y=kx+b切⊙M于點A,交x軸于P,求PA的長;
(3)⊙M上是否存在這樣的點Q,使點Q、A、C三點構成的三角形與△AOC相似?若存在,請求出點的坐標,并求出過A、C、Q三點的拋物線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接BP并延長交⊙P于C,過點C的直線y=2x+b交x軸于D,且⊙P的半徑為
5
,AB=4.若函數y=
k
x
(x<0)的圖象過C點,則k的值是( 。
A、±4
B、-4
C、-2
5
D、4

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接BP并延長交⊙P于C,過點C精英家教網的直線y=2x+b交x軸于D,且⊙P的半徑為
5
,AB=4.
(1)求點B,P,C的坐標;
(2)求證:CD是⊙P的切線;
(3)若二次函數y=-x2+(a+1)x+6的圖象經過點B,求這個二次函數的解析式,并寫出使二次函數值小于一次函數y=2x+b值的x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,點A在y軸上,⊙A與x軸交于B、C兩點,與y軸交于點D(0,3)和點E(0,精英家教網-1)
(1)求經過B、E、C三點的二次函數的解析式;
(2)若經過第一、二、三象限的一動直線切⊙A于點P(s,t),與x軸交于點M,連接PA并延長與⊙A交于點Q,設Q點的縱坐標為y,求y關于t的函數關系式,并觀察圖形寫出自變量t的取值范圍;
(3)在(2)的條件下,當y=0時,求切線PM的解析式,并借助函數圖象,求出(1)中拋物線在切線PM下方的點的橫坐標x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,點I在x軸上,以I為圓心、r為半徑的半圓I與x軸相交于點A、B,與y軸相精英家教網交于點D,順次連接I、D、B三點可以組成等邊三角形.過A、B兩點的拋物線y=ax2+bx+c的頂點P也在半圓I上.
(1)證明:無論半徑r取何值時,點P都在某一個正比例函數的圖象上.
(2)已知兩點M(0,-1)、N(1、0),且射線MN與拋物線y=ax2+bx+c有兩個不同的交點,請確定r的取值范圍.
(3)請簡要描述符合本題所有條件的拋物線的特征.

查看答案和解析>>

同步練習冊答案