【題目】(1)如圖1,在四邊形中,,,分別是上的點,且,探究圖中之間的數(shù)量關(guān)系。小明同學(xué)探究此問題的方法是:延長到點,使。連接,先證明,再證明,可得出結(jié)論。他的結(jié)論應(yīng)是______________________________________(不寫過程)。
(2)如圖2,若在四邊形中,,,分別是上的點,且,上述結(jié)論是否仍然成立,并說明理由。
(3)如圖3,已知在四邊形中,,,若點在的延長線上,點在的延長線上,仍然滿足,請寫出與的數(shù)量關(guān)系,并給出證明過程。
【答案】(1);(2)仍成立,見解析;(3),見解析
【解析】
(1)延長FD到點G,使DG=BE,連接AG,利用SAS可判定△ABE≌△ADG,進而得出∠BAE=∠DAG,AE=AG,再利用SSS判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF,據(jù)此得出結(jié)論;
(2)延長FD到點G,使DG=BE,連接AG,利用SAS先判定△ABE≌△ADG,進而得出∠BAE=∠DAG,AE=AG,再利用SSS判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;
(3)在DC延長線上取一點G,使得DG=BE,連接AG,利用SAS先判定△ADG≌△ABE,再利用SSS判定△AEF≌△AGF,得出∠FAE=∠FAG,最后根據(jù)∠FAE+∠FAG+∠GAE=360°,推導(dǎo)得到2∠FAE+∠DAB=360°,即可得出結(jié)論.
(1)∠BAE+∠FAD=∠EAF.理由:
如圖1,延長FD到點G,使DG=BE,連接AG,
在ABE和ADG中,
∴△ABE≌△ADG(SAS),
∴EF=FG,AE=AG,BAE=DAG
EF=BE+FD
∴EF=GD+FD=GF
在△EAF和△GAF中,
∴△AEF≌△AGF(SSS),
∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.
故答案為:∠BAE+∠FAD=∠EAF;
(2)仍成立,
理由如下:如圖,延長到點,使,連接 、
B+ADF=180,又ADG+ADF=180,
∴B=ADG
在△ABE和△ADG中,
∴△ABE△ADG(SAS),
∴AE=AG,BAE=DAG,
EF=BE+FD
∴EF=GD+FD=GF
在△EAF和△GAF中,
∴△EAF△GAF(SSS)
∴EAF=GAF=BAE+FAD
∴
(3)
證明:如圖,在的延長線上取一點,使得,連接
ABC+ADC=180,又ABC+ABE=180,
∴ABE=ADG
在△ABE和△ADG中,
∴△ABE△ADG(SAS),
∴AE=AG,BAE=DAG,
EF=BE+FD
∴EF=GD+FD=GF
在△EAF和△GAF中,
∴△EAF△GAF(SSS)
∴ 又
∴
∴,
∴
∴
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明想測山高和索道的長度.他在處仰望山頂,測得仰角,再往山的方向(水平方向)前進至索道口處,沿索道方向仰望山頂,測得仰角.
求這座山的高度(小明的身高忽略不計);
求索道的長(結(jié)果精確到).
(參考數(shù)據(jù):,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團隊抓住商機,購進一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他費用80元.
(1)請直接寫出y與x之間的函數(shù)關(guān)系式;
(2)如果每天獲得160元的利潤,銷售單價為多少元?
(3)設(shè)每天的利潤為w元,當(dāng)銷售單價定為多少元時,每天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一張邊長為40 cm的正方形硬紙板,進行適當(dāng)?shù)牟眉,折成一個長方體盒子(紙板的厚度忽略不計).
(1)如圖,若在正方形硬紙板的四角各剪掉一個同樣大小的正方形,將剩余部分折成一個無蓋的長方體盒子.
①要使折成的長方體盒子的底面積為484 cm2,那么剪掉的正方形的邊長為多少?
②折成的長方體盒子的側(cè)面積是否有最大值?如果有,求出這個最大值和此時剪掉的正方形的邊長;如果沒有,說明理由.
(2)若在正方形硬紙板的四周剪掉一些矩形(即剪掉的矩形至少有一條邊在正方形硬紙板的邊上),將剩余部分折成一個有蓋的長方體盒子.若折成的一個長方體盒子的表面積為550 cm2,求此時長方體盒子的長、寬、高(只需求出符合要求的一種情況).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形中,,,且,,對角線.
求證:四邊形是矩形;
如圖,若動點從點出發(fā),在邊上以每秒的速度向點勻速運動,同時動點從點出發(fā),在邊上以每秒的速度向點勻速運動,運動時間為秒,連接、,若,求的值;
如圖,若點在對角線上,,動點從點出發(fā),以每秒的速度沿運動至點止.設(shè)點運動了秒,請你探索:從運動開始,經(jīng)過多少時間,以點、、為頂點的三角形是等腰三角形?請求出所有可能的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,直線l與⊙O相切于點D,且l∥BC
(1)求證:AD平分∠BAC
(2)作∠ABC的平分線BE交AD于點E,求證:BD=DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)yx3的圖象與反比例函數(shù)y(k為常數(shù),且k0)的圖象交于A(1,a),B兩點.
(1)求反比例函數(shù)的表達式及點B的坐標(biāo);
(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個反比例函數(shù)和在第一象限內(nèi)的圖象如圖所示,點P在的圖象上,PC⊥軸于點C,交的圖象于點A,PC⊥軸于點D,交的圖象于點B. 當(dāng)點P在的圖象上運動時,以下結(jié)論:
①
②的值不會發(fā)生變化
③PA與PB始終相等
④當(dāng)點A是PC的中點時,點B一定是PD的中點.
其中一定不正確的是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為a的正方形中挖掉一個邊長為b的小正方形(a>b),把余下的部分剪拼成一個矩形(如圖),通過計算圖形(陰影部分)的面積,驗證了一個等式,則這個等式是( )
A.a2-b2=(a+b)(a-b)
B.(a+b)2=a2+2ab+b2
C.(a-b)2=a2-2ab+b2
D.a2-ab=a(a-b)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com