已知直線AB交坐標(biāo)軸于A(10,0)、B(0,5)兩點,
(1)直線AB的解析式為______;
(2)在直線AB上有一動點M,在坐標(biāo)系內(nèi)有另一點N,若以點O、B、M、N為頂點構(gòu)成的四邊形為菱形,則點N的坐標(biāo)為______.

解:(1)設(shè)直線AB的解析式為y=kx+b,把A(10,0)、B(0,5)代入得:
,
解得:,
∴y=-x+5,
故答案為:y=-x+5;

(2)以點O、B、M、N為頂點構(gòu)成的四邊形為菱形,
∴OB=BM或OM=BM
∴點N的坐標(biāo)為(-2,),(4,8),(-5,),(2,-).
故答案為:(-2,),(4,8),(-5,),(2,-).
分析:(1)設(shè)直線AB的解析式為y=kx+b,把A(10,0)、B(0,5)兩點的坐標(biāo)代入求出k和b的值即可;
(2)因為菱形的四個邊相等,要是以點O、B、M、N為頂點構(gòu)成的四邊形為菱形,那么OB=BM是一種情況,那么OM=BM是一種情況,則可求出N的坐標(biāo).
點評:本題考查了用待定系數(shù)法求一次函數(shù)的解析式和查菱形的性質(zhì):菱形的四邊相等,以及坐標(biāo)與圖形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知直線AB交坐標(biāo)軸于A(10,0)、B(0,5)兩點,
(1)直線AB的解析式為
y=-
1
2
x+5
y=-
1
2
x+5
;
(2)在直線AB上有一動點M,在坐標(biāo)系內(nèi)有另一點N,若以點O、B、M、N為頂點構(gòu)成的四邊形為菱形,則點N的坐標(biāo)為
(-2
5,
5
)
(4,8)(-5,
5
2
)
(2
5,
-
5
)
(-2
5,
5
)
(4,8)(-5,
5
2
)
(2
5,
-
5
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線AB交坐標(biāo)軸于A(10,0)、B(0,5)兩點,

(1)直線AB的解析式為   ▲    ;

(2)在直線AB上有一動點M,在坐標(biāo)系內(nèi)有另一點N,若以點OB、M、N為頂點構(gòu)成

的四邊形為菱形,則點N的坐標(biāo)為   ▲   

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線AB交坐標(biāo)軸于A(10,0)、B(0,5)兩點,
(1)直線AB的解析式為       
(2)在直線AB上有一動點M,在坐標(biāo)系內(nèi)有另一點N,若以點O、B、MN為頂點構(gòu)成
的四邊形為菱形,則點N的坐標(biāo)為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆浙江省金華地區(qū)九年級下學(xué)期第一次月考數(shù)學(xué)卷 題型:填空題

已知直線AB交坐標(biāo)軸于A(10,0)、B(0,5)兩點,
(1)直線AB的解析式為       ;
(2)在直線AB上有一動點M,在坐標(biāo)系內(nèi)有另一點N,若以點O、B、M、N為頂點構(gòu)成
的四邊形為菱形,則點N的坐標(biāo)為       

查看答案和解析>>

同步練習(xí)冊答案