【題目】某大型超市從生產(chǎn)基地購進一批水果,運輸過程中質(zhì)量損失10%,假設(shè)不計超市其它費用,如果超市要想至少獲得20%的利潤,那么這種水果的售價在進價的基礎(chǔ)上應(yīng)至少提高(
A.40%
B.33.4%
C.33.3%
D.30%

【答案】B
【解析】解:設(shè)購進這種水果a千克,進價為y元/千克,這種水果的售價在進價的基礎(chǔ)上應(yīng)提高x,則售價為(1+x)y元/千克,由題意得: ×100%≥20%,
解得:x≥ ≈33.4%,
經(jīng)檢驗,x≥ 是原不等式的解.
∵超市要想至少獲得20%的利潤,
∴這種水果的售價在進價的基礎(chǔ)上應(yīng)至少提高33.4%.
故選:B.
缺少質(zhì)量和進價,應(yīng)設(shè)購進這種水果a千克,進價為y元/千克,這種水果的售價在進價的基礎(chǔ)上應(yīng)提高x,則售價為(1+x)y元/千克,根據(jù)題意得:購進這批水果用去ay元,但在售出時,只剩下(1﹣10%)a千克,售貨款為(1﹣10%)a×(1+x)y元,根據(jù)公式 ×100%=利潤率可列出不等式,解不等式即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點A作AE∥BD,過點D作ED∥AC,兩線相交于點E.

(1)求證:四邊形AODE是菱形;
(2)連接BE,交AC于點F.若BE⊥ED于點E,求∠AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求填空:
(1)填表:

a

0.0004

0.04

4

400


(2)根據(jù)你發(fā)現(xiàn)規(guī)律填空: 已知: =2.638,求 , 的值;
已知: =0.06164, =61.64,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A(6,0),O為坐標(biāo)原點,P是線段OA上任意一點(不含端點O,A),過P、O兩點的二次函數(shù)y1和過P、A兩點的二次函數(shù)y2的圖象開口均向下,它們的頂點分別為B、C,射線OBAC相交于點D.當(dāng)OD=AD=5時,這兩個二次函數(shù)的最大值之和等于______________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用頻數(shù)分布直方圖描述數(shù)據(jù),下列說法正確的是(   )

A. 所分的組數(shù)與數(shù)據(jù)的個數(shù)無關(guān)

B. 長方形的高越高,說明落在這個區(qū)域的數(shù)據(jù)越多

C. 可以不求最大值和最小值的差

D. 可以看出數(shù)據(jù)的變化趨勢

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AE平分∠BAD , ∠1=15°.

(1)求∠2的度數(shù).
(2)求證:BOBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一次數(shù)學(xué)課外實踐活動中,要求測量山坡前某建筑物的高度AB.小剛在D處用高1.5m的測角儀CD,測得該建筑物頂端A的仰角為45°,然后沿傾斜角為30°的山坡向上前進20m到達E,重新安裝好測角儀后又測得該建筑物頂端A的仰角為60°.求該建筑物的高度AB.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,O為BC的中點,AC與半圓O相切于點D.

(1)求證:AB是半圓O所在圓的切線;

(2)若cosABC=,AB=12,求半圓O所在圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AD,AE是三角形ABC的高和角平分線,∠B=36°,∠C=76°,求∠DAE的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案