【題目】已知°,點(diǎn)的內(nèi)部,點(diǎn)與點(diǎn)關(guān)于對(duì)稱,點(diǎn)與點(diǎn)關(guān)于對(duì)稱,若,則______

【答案】5

【解析】

連接OP,根據(jù)軸對(duì)稱的性質(zhì)可得OP1=OP=OP2,∠BOP=BOP1,∠AOP=AOP2,然后求出∠P1OP2=2AOB=60°,再根據(jù)有一個(gè)角是60°的等腰三角形是等邊三角形判定.

解:如圖,連接OP,

P1P關(guān)于OB對(duì)稱,P2P關(guān)于OA對(duì)稱,
OP1=OP=OP2,∠BOP=BOP1,∠AOP=AOP2,
OP1=OP2,
P1OP2=BOP+BOP1+AOP+AOP2=2BOP+2AOP=2AOB
∵∠AOB=30°,
∴∠P1OP2=60°,
∴△P1OP2是等邊三角形.
P1P2 =OP2=OP=5,

故答案為:5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,ACBD相交于OAE平分∠BAD,交BCE,若∠CAE=15°,求∠BOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=5,BC=8,將△ABC繞著點(diǎn)B旋轉(zhuǎn)的△A′BC′,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′,點(diǎn)C的對(duì)應(yīng)點(diǎn)C′.如果點(diǎn)A′在BC邊上,那么點(diǎn)C和點(diǎn)C′之間的距離等于多少

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)分別在邊上,相交于點(diǎn),如果已知,那么還不能判定,補(bǔ)充下列一個(gè)條件后,仍無法判定的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在2016年龍巖市初中體育中考中,隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結(jié)論錯(cuò)誤的是( )
A.平均數(shù)為160
B.中位數(shù)為158
C.眾數(shù)為158
D.方差為20.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)要求回答問題:
(1)【提出問題】
已知:菱形ABCD的變長(zhǎng)為4,∠ADC=60°,△PEF為等邊三角形,當(dāng)點(diǎn)P與點(diǎn)D重合,點(diǎn)E在對(duì)角線AC上時(shí)(如圖1所示),求AE+AF的值;

(2)【類比探究】
在上面的問題中,如果把點(diǎn)P沿DA方向移動(dòng),使PD=1,其余條件不變(如圖2),你能發(fā)現(xiàn)AE+AF的值是多少?請(qǐng)直接寫出你的結(jié)論;

(3)【拓展遷移】
在原問題中,當(dāng)點(diǎn)P在線段DA的延長(zhǎng)線上,點(diǎn)E在CA的延長(zhǎng)線上時(shí)(如圖3),設(shè)AP=m,則線段AE、AF的長(zhǎng)與m有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1所示,是由幾個(gè)小立方塊所搭幾何體的俯視圖,小立方塊中的數(shù)字表示在該位置小立方塊的個(gè)數(shù).請(qǐng)畫出從正面和從左面看到的這個(gè)幾何體的形狀圖.(注意:畫得不規(guī)范不給分)

從正面看:

從左面看:

2)如圖2,一次數(shù)學(xué)活動(dòng)課上,小明用7個(gè)棱長(zhǎng)為1cm的小立方塊積木搭成的幾何體,然后他請(qǐng)小亮用盡可能少的同樣大小的立方塊在旁邊再搭一個(gè)幾何體,使小亮所搭的幾何體恰好可以和小明所搭的幾何體拼成一個(gè)大長(zhǎng)方體(即拼大長(zhǎng)方體時(shí)將其中一個(gè)幾何體翻轉(zhuǎn),且假定組成每個(gè)幾何體的立方塊粘合在一起),則:

①小亮至少還需要   個(gè)小正方體;

②請(qǐng)畫出小明所搭幾何體的三視圖,并計(jì)算①中小亮所搭幾何體的表面積.

主視圖:

俯視圖:

左視圖:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.

(1)求證:△ABC≌△ADE;

(2)求∠FAE的度數(shù);

(3)求證:CD=2BF+DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,直線l1:y=﹣x+n過點(diǎn)A(﹣1,3),雙曲線C:y= (x>0),過點(diǎn)B(1,2),動(dòng)直線l2:y=kx﹣2k+2(常數(shù)k<0)恒過定點(diǎn)F.

(1)求直線l1 , 雙曲線C的解析式,定點(diǎn)F的坐標(biāo);
(2)在雙曲線C上取一點(diǎn)P(x,y),過P作x軸的平行線交直線l1于M,連接PF.求證:PF=PM.
(3)若動(dòng)直線l2與雙曲線C交于P1 , P2兩點(diǎn),連接OF交直線l1于點(diǎn)E,連接P1E,P2E,求證:EF平分∠P1EP2

查看答案和解析>>

同步練習(xí)冊(cè)答案