【題目】如圖,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.動點P從點A開始沿邊AB向點B以1cm/s的速度移動,動點Q從點B開始沿邊BC向點C以2cm/s的速度移動.若P,Q兩點分別從A,B兩點同時出發(fā),在運動過程中,△PBQ的最大面積是( )
A.18cm2
B.12cm2
C.9cm2
D.3cm2
【答案】C
【解析】解:∵tan∠C= ,AB=6cm,
∴ = = ,
∴BC=8,
由題意得:AP=t,BP=6﹣t,BQ=2t,
設△PBQ的面積為S,
則S= ×BP×BQ= ×2t×(6﹣t),
S=﹣t2+6t=﹣(t2﹣6t+9﹣9)=﹣(t﹣3)2+9,
P:0≤t≤6,Q:0≤t≤4,
∴當t=3時,S有最大值為9,
即當t=3時,△PBQ的最大面積為9cm2;
故選C.
先根據(jù)已知求邊長BC,再根據(jù)點P和Q的速度表示BP和BQ的長,設△PBQ的面積為S,利用直角三角形的面積公式列關(guān)于S與t的函數(shù)關(guān)系式,并求最值即可本題考查了有關(guān)于直角三角形的動點型問題,考查了解直角三角形的有關(guān)知識和二次函數(shù)的最值問題,解決此類問題的關(guān)鍵是正確表示兩動點的路程(路程=時間×速度);這類動點型問題一般情況都是求三角形面積或四邊形面積的最值問題,轉(zhuǎn)化為函數(shù)求最值問題,直接利用面積公式或求和、求差表示面積的方法求出函數(shù)的解析式,再根據(jù)函數(shù)圖象確定最值,要注意時間的取值范圍.
科目:初中數(shù)學 來源: 題型:
【題目】倡導健康生活,推進全民健身,某社區(qū)要購進A,B兩種型號的健身器材若干套,A,B兩種型號健身器材的購買單價分別為每套310元,460元,且每種型號健身器材必須整套購買.
(1)若購買A,B兩種型號的健身器材共50套,且恰好支出20000元,求A,B兩種型號健身器材各購買多少套?
(2)若購買A,B兩種型號的健身器材共50套,且支出不超過18000元,求A種型號健身器材至少要購買多少套?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(1,2),B(3,1),C(-2,-1).
(1)在圖中作出關(guān)于軸對稱的.
(2)寫出點的坐標(直接寫答案).
A1_____________,B1______________,C1______________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知y是x的函數(shù),自變量x的取值范圍x>0,下表是y與x的幾組對應值:
x | … | 1 | 2 | 3 | 5 | 7 | 9 | … |
y | … | 1.98 | 3.95 | 2.63 | 1.58 | 1.13 | 0.88 | … |
小騰根據(jù)學習函數(shù)的經(jīng)驗,利用上述表格所反映出的y與x之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進行了探究.
下面是小騰的探究過程,請補充完整:
(1)如圖,在平面直角坐標系xOy中,描出了以上表格中各對對應值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象;
(2)根據(jù)畫出的函數(shù)圖象,寫出:
①x=4對應的函數(shù)值y約為
②該函數(shù)的一條性質(zhì):
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是矩形ABCD的邊AD上的一動點,矩形的兩條邊AB、BC的長分別是6和8,則點P到矩形的兩條對角線AC和BD的距離之和是( 。
A.4.8
B.5
C.6
D.7.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,AD是經(jīng)過A點的一條直線,且B、C在AD的兩側(cè),BD⊥AD于D,CE⊥AD于E,交AB于點F,CE=10,BD=4,則DE的長為( 。
A. 6 B. 5 C. 4 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點P是弦AC上一動點(不與A,C重合),過點P作PE⊥AB,垂足為E,射線EP交 于點F,交過點C的切線于點D.
(1)求證:DC=DP;
(2)若∠CAB=30°,當F是 的中點時,判斷以A,O,C,F(xiàn)為頂點的四邊形是什么特殊四邊形?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一只螞蟻在正方形ABCD區(qū)域內(nèi)爬行,點O是對角線的交點,∠MON=90°,OM,ON分別交線段AB,BC于M,N兩點,則螞蟻停留在陰影區(qū)域的概率為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑為4,△ABC是⊙O的內(nèi)接三角形,連接OB、OC.若∠BAC與∠BOC互補,則弦BC的長為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com