精英家教網(wǎng)已知反比例函數(shù)y1=
kx
的圖象與一次函數(shù)y2=ax+b的圖象交于點A(1,4)和點B(m,-2),
(1)求這兩個函數(shù)的關(guān)系式;
(2)觀察圖象,寫出使得y1>y2成立的自變量x的取值范圍;
(3)如果點C與點A關(guān)于x軸對稱,求△ABC的面積.
分析:(1)先根據(jù)點A的坐標(biāo)求出反比例函數(shù)的解析式為y1=
4
x
,再求出B的坐標(biāo)是(-2,-2),利用待定系數(shù)法求一次函數(shù)的解析式;
(2)當(dāng)一次函數(shù)的值小于反比例函數(shù)的值時,直線在雙曲線的下方,直接根據(jù)圖象寫出一次函數(shù)的值小于反比例函數(shù)的值x的取值范圍x<-2 或0<x<1.
(3)根據(jù)坐標(biāo)與線段的轉(zhuǎn)換可得出:AC、BD的長,然后根據(jù)三角形的面積公式即可求出答案.
解答:解:(1)∵函數(shù)y1=
k
x
的圖象過點A(1,4),即4=
k
1
,
∴k=4,即y1=
4
x
,
又∵點B(m,-2)在y1=
4
x
上,
∴m=-2,
∴B(-2,-2),
又∵一次函數(shù)y2=ax+b過A、B兩點,
-2a+b=-2
a+b=4
,
解之得
a=2
b=2

∴y2=2x+2.
綜上可得y1=
4
x
,y2=2x+2.

(2)要使y1>y2,即函數(shù)y1的圖象總在函數(shù)y2的圖象上方,
如圖所示:當(dāng)x<-2 或0<x<1時y1>y2
(3)
精英家教網(wǎng)
由圖形及題意可得:AC=8,BD=3,
∴△ABC的面積S△ABC=
1
2
AC×BD=
1
2
×8×3=12.
點評:本題主要考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式.以及三角形面積的求法,這里體現(xiàn)了數(shù)形結(jié)合的思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知反比例函數(shù)y1=
kx
和一次函數(shù)y2=ax+1的圖象相交于第一象限內(nèi)的點A,且點A的橫坐標(biāo)精英家教網(wǎng)為1.過點A作AB⊥x軸于點B,△AOB的面積1.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)若一次函數(shù)y2=ax+1的圖象與x軸相交于點C,求∠ACO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知反比例函數(shù)y1=
k1x
(k1>0)與一次函數(shù)y2=k2x+1,(k2≠0)相交于A、B兩點,AC⊥x軸于點C.若S△OAC=1,tan∠AOC=2
(1)求反比例函數(shù)與一次函數(shù)的解析式
(2)求S△ABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知反比例函數(shù)y1=
k
x
(k≠0)
的圖象與一次函數(shù)y2=ax+b(a≠0)的圖象交于點A(-4,1)和點B,直線y2=ax+b分別交x軸、y軸于C、D兩點,且tan∠OCD=
1
2

(1)求這兩個函數(shù)的關(guān)系式,并求出B點的坐標(biāo);
(2)觀察圖象,直接寫出使得y1<y2成立的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A,B兩點,與x軸交于點C,過A作AD⊥x軸于D,若OA=
5
,AD=
1
2
OD,點B的橫坐標(biāo)為
1
2

(1)求一次函數(shù)的解析式及△AOB的面積.
(2)已知反比例函數(shù)y1和一次函數(shù)y2,結(jié)合圖象直接寫出:當(dāng)y1>y2時,x的取值范圍.
(3)在坐標(biāo)軸上是否存在點P使△OAP為等腰三角形?若存在,請直接寫出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案