已知直線AB∥CD,直線EF與AB、CD分別相交于點E、F.
(1)如圖1,若∠1=60°,求∠2、∠3的度數;
(2)若點P是平面內的一個動點,連結PE、PF,探索∠EPF、∠PEB、∠PFD三個角之間的關系:
①當點P在圖2的位置時,可得∠EPF=∠PEB+∠PFD;
請閱讀下面的解答過程,并填空(理由或數學式).
解:如圖2,過點P作MN∥AB,
則∠EPM=∠PEB
(兩直線平行,內錯角相等)
(兩直線平行,內錯角相等)
∵AB∥CD(已知),MN∥AB(作圖),
∴MN∥CD
(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)
(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)
∴∠MPF=∠PFD
(兩直線平行,內錯角相等)
(兩直線平行,內錯角相等)
∴
∠EPM+∠FPM
∠EPM+∠FPM
=∠PEB+∠PFD(等式的性質)
即∠EPF=∠PEB+∠PFD.
②當點P在圖3的位置時,請直接寫出∠EPF、∠PEB、∠PFD三個角之間的關系:
∠EPF+∠PEB+∠PFD=360°
∠EPF+∠PEB+∠PFD=360°
;
③當點P在圖4的位置時,請直接寫出∠EPF、∠PEB、∠PFD三個角之間的關系:
∠EPF+∠PFD=∠PEB
∠EPF+∠PFD=∠PEB
.