高科技發(fā)展公司投資500萬元,成功研制出一種市場需求量較大的高科技替代產(chǎn)品,并投入資金1500萬元作為固定投資,已知生產(chǎn)每件產(chǎn)品的成本是40元.在銷售過程中發(fā)現(xiàn):當(dāng)銷售單價(jià)定為100元時(shí),年銷售量為20萬件;銷售單價(jià)每增加10元,年銷售量將減少1萬件,設(shè)銷售單價(jià)為x(元),年銷售量為y(萬件),年獲利(年獲利=年銷售額一生產(chǎn)成本—投資)為z(萬元).
(1)試寫出y與x之間的函數(shù)關(guān)系式(不寫x的取值范圍);
(2)試寫出z與x之間的函數(shù)關(guān)系式(不寫x的取值范圍);
(3)公司計(jì)劃,在第一年按年獲利最大確定銷售單價(jià)進(jìn)行銷售;到第二年年底獲利不低于1130萬元,請(qǐng)借助函數(shù)的大致圖象說明:第二年的銷售單價(jià)x(元)應(yīng)確定在什么范圍內(nèi)?
(1)y=-x+30;(2)z=-x2+34x-3200;(3)第二年的銷售單價(jià)應(yīng)確定在不低于120元且不高于220元的范圍內(nèi).
【解析】
試題分析:(1)依題意當(dāng)銷售單價(jià)定為x元時(shí),年銷售量減少(x-100),則易求y與x之間的函數(shù)關(guān)系式.
(2)由題意易得Z與x之間的函數(shù)關(guān)系.
(3)根據(jù)z=(30-x)(x-40)-310=-x2+34x-1510=1130進(jìn)而得出當(dāng)120≤x≤220時(shí),z≥1130畫出圖象得出即可.
試題解析:(1)依題意知,當(dāng)銷售單價(jià)定為x元時(shí),年銷售量減少 (x-100)萬件.
∴y=20-(x-100)=-x+30.
即y與x之間的函數(shù)關(guān)系式是:y=-x+30.
(2)由題意,得:z=(30-)(x-40)-500-1500=-x2+34x-3200.
即z與x之間的函數(shù)關(guān)系式是:z=-x2+34x-3200.
(3)∵z=-x2+34x-3200=-(x-170)2-310.
∴當(dāng)x=170時(shí),z取最大值,最大值為-310.
也就是說:當(dāng)銷售單價(jià)定為170元時(shí),年獲利最大,并且到第一年底公司還差310萬元就可以收回全部投資.
第二年的銷售單價(jià)定為x元時(shí),則年獲利為:
z=(30-x)(x-40)-310
=-x2+34x-1510.
當(dāng)z=1130時(shí),即1130=-+34-1510.
整理,得x2-340x+26400=0.
解得x1=120,x2=220.
函數(shù)z=-x2+34x-1510的圖象大致如圖所示:
由圖象可以看出:當(dāng)120≤x≤220時(shí),z≥1130.
所以第二年的銷售單價(jià)應(yīng)確定在不低于120元且不高于220元的范圍內(nèi).
考點(diǎn):二次函數(shù)的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com