【題目】如圖,在△ABC中,CD⊥AB于點(diǎn)D,CE是∠ACB的平分線,∠A=20°,∠B=60°,求∠BCD和∠ECD的度數(shù).
【答案】∠BCD=30°,∠ECD=20°
【解析】由CD⊥AB與∠B=60°,根據(jù)兩銳角互余,即可求得∠BCD的度數(shù),又由∠A=20°,∠B=60°,求得∠ACB的度數(shù),由CE是∠ACB的平分線,可求得∠ACE的度數(shù),然后根據(jù)三角形外角的性質(zhì),求得∠CEB的度數(shù).
∵CD⊥AB∴∠CDB=90°.
∵∠B=60°
∴∠BCD=180°-∠CDB-∠B=30°.
∵∠A=20°∠B=60°∠A+∠B+∠ACB=180°
∴∠ACB=100°.
∵CE是∠ACB的平分線
∴∠BCE=∠ACB=50°
∴∠CEB=180°-∠BCE-∠B=70°
∠ECD=∠BCE-∠BCD=20°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一組有規(guī)律的圖案,圖案①是由4個(gè)組成的,圖案②是由7個(gè)組成的,圖案③是由10個(gè)組成的……設(shè)第n個(gè)圖案由y個(gè)組成.
(1)求y與n之間的關(guān)系,并指出其中的變量與常量.
(2)第100個(gè)圖案是由多少個(gè)組成的?
(3)能否有一個(gè)圖案是由2018個(gè)組成的?如果有,請(qǐng)求出它是第幾個(gè)圖案;如果沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,假命題是( )
A.經(jīng)過(guò)兩點(diǎn)有且只有一條直線
B.平行四邊形的對(duì)角線相等
C.兩腰相等的梯形叫做等腰梯形
D.圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB∥CD,AC∥BD,CE平分∠ACD.
(1)求證:△ACE是等腰三角形;
(2)求證:∠BEC>∠BDC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷下列各小題中的△ABC的形狀(填“銳角三角形”“直角三角形”或“鈍角三角形”).
(1)∠A+∠C=∠B. _________
(2)∠A=∠B=∠C. __________
(3)∠A∶∠B∶∠C=1∶1∶2. ____________
(4)∠A=∠B=∠C. ____________
(5)∠A=∠B=∠C. ___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,AB∥DE,AC∥DF,AC=DF下列條件中,不能判斷△ABC≌△DEF的是( 。
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形具有兩條對(duì)稱(chēng)軸的是( )
A. 等邊三角形B. 平行四邊形C. 正方形D. 矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx-m-2x的圖象與y軸的負(fù)半軸相交,且函數(shù)值y隨自變量x的增大而減小,則下列結(jié)論正確的是( )
A. k<2,m>0 B. k<2,m<0 C. k>2,m>0 D. k<0,m<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若干個(gè)不等于0的有理數(shù)相乘,積的符號(hào)( )
A.由因數(shù)的個(gè)數(shù)決定
B.由正因數(shù)的個(gè)數(shù)決定
C.由負(fù)因數(shù)的個(gè)數(shù)決定
D.由負(fù)因數(shù)和正因數(shù)個(gè)數(shù)的差為決定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com