【題目】如圖,經(jīng)過原點(diǎn)且與兩坐標(biāo)軸分別交于點(diǎn)和點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,解答下列各題:
(1)求圓心的坐標(biāo);
(2)在上是否存在一點(diǎn),使得是等腰三角形?若存在,請求出的度數(shù);若不存在,請說明理由.
【答案】(1);(2)存在符合條件的點(diǎn):,,,
【解析】
(1)如圖(見解析),過作軸于,先確定AB是圓O的直徑,再根據(jù)垂徑定理可得,根據(jù)中位線定理可知,從而可得點(diǎn)C的坐標(biāo);
(2)如圖(見解析),作的垂直平分線,交圓于,交于,連接,根據(jù)垂直平分線的性質(zhì)可知點(diǎn)符合要求,再根據(jù)圓周角定理和直角三角形的性質(zhì)求出的度數(shù);最后再分析當(dāng)OB為所求等腰三角形的腰時(shí)點(diǎn)P的位置即可.
(1)如圖,過作軸于
∴是圓的直徑
則(垂徑定理),(中位線定理)
即;
(2)如圖,作的垂直平分線,交圓于,交于,連接
則,都是等腰三角形,即、均符合點(diǎn)的要求
由垂徑定理知:必過點(diǎn),即是圓的直徑
∴,
在中,,
∴
同理可得
是等邊三角形
故當(dāng)點(diǎn)P在OB的上方時(shí),不需要考慮OB為腰的情況
又∵是直徑
同理可得
故當(dāng)點(diǎn)P在OB的下方時(shí),OB不可能為腰
綜上,存在符合條件的點(diǎn):;.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC和△ADE中AC=BC,AE=DE , ∠ACB=∠AED=90° , 點(diǎn)E在AB上,F是線段BD的中點(diǎn),連接CE、FE.
(1)若AD=3,BE=4 ,求EF的長
(2)求證:CE=EF
(3)將圖1中的△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使△AED的一邊AE恰好與△ABC的邊AC在同一條直線上(如圖2),連接BD,取BD的中點(diǎn)F,問(2)中的結(jié)論是否仍然成立,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD邊長為1,以AB為直徑作半圓,點(diǎn)P是CD中點(diǎn),BP與半圓交于點(diǎn)Q,連接給出如下結(jié)論:;;;其中正確的結(jié)論是______填寫序號
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖:為測量一個(gè)圓的半徑,采用了下面的方法:將圓平放在一個(gè)平面上,用一個(gè)含有30°角的三角板和一把無刻度的直尺,按圖示的方式測量(此時(shí),⊙O與三角板和直尺分別相切,切點(diǎn)分別為點(diǎn)C、點(diǎn)B),若量得AB=5cm,試求圓的半徑以及的弧長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)分別為A(0,1),B(-1,0),C(0,-1),D(1,0).對于圖形M,給出如下定義:P為圖形M上任意一點(diǎn),Q為正方形ABCD邊上任意一點(diǎn),如果P,Q兩點(diǎn)間的距離有最大值,那么稱這個(gè)最大值為圖形M的“正方距”,記作.
(1)已知點(diǎn),
①直接寫出的值;
②直線與x軸交于點(diǎn)F,當(dāng)取最小值時(shí),求k的取值范圍;
(2)的圓心為 ,半徑為1.若,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校一課外活動小組為了解學(xué)生最喜歡的球類運(yùn)動情況,隨機(jī)抽查本校九年級的200名學(xué)生,調(diào)查的結(jié)果如圖所示.請根據(jù)該扇形統(tǒng)計(jì)圖解答以下問題:
(1)求圖中的x的值;
(2)求最喜歡乒乓球運(yùn)動的學(xué)生人數(shù);
(3)若由3名最喜歡籃球運(yùn)動的學(xué)生,1名最喜歡乒乓球運(yùn)動的學(xué)生,1名最喜歡足球運(yùn)動的學(xué)生組隊(duì)外出參加一次聯(lián)誼活動.欲從中選出2人擔(dān)任組長(不分正副),列出所有可能情況,并求2人均是最喜歡籃球運(yùn)動的學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測量一個(gè)鐵球的直徑,將該鐵球放入工件槽內(nèi),測得的有關(guān)數(shù)據(jù)如圖所示(單位:cm),則該鐵球的直徑為( )
A.12 cmB.10 cmC.8 cmD.6 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了解旅游人數(shù)的變化情況,收集并整理了2017年1月至2019年12月期間的月接待旅游量(單位:萬人次)的數(shù)據(jù)并繪制了統(tǒng)計(jì)圖如下:
根據(jù)統(tǒng)計(jì)圖提供的信息,下列推斷不合理的是( )
A.2017年至2019年,年接待旅游量逐年增加
B.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份
C.2019年的月接待旅游量的平均值超過300萬人次
D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相對于上半年(1月至6月)波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)求證:無論p為何值,方程(x-2)(x-3)-p2=0總有兩個(gè)不相等的實(shí)數(shù)根.
(2)若方程(x-2)(x-3)-p2=0的兩根為正整數(shù),試求p的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com