如圖所示,在平面直角坐標(biāo)系xOy中,矩形OABC的邊長OA、OC分別為12cm、6cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B,且18a+c=0.

(1)求拋物線的解析式.
(2)如果點(diǎn)P由點(diǎn)A開始沿AB邊以1cm/s的速度向終點(diǎn)B移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B開始沿BC邊以2cm/s的速度向終點(diǎn)C移動(dòng).
①移動(dòng)開始后第t秒時(shí),設(shè)△PBQ的面積為S,試寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍.
②當(dāng)S取得最大值時(shí),在拋物線上是否存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請說明理由.
(1)拋物線的解析式為y=x2﹣4x﹣12;
(2)①S=﹣(t﹣3)2+9,(0<t<6),
②當(dāng)t=3時(shí),S取最大值為9,點(diǎn)R坐標(biāo)為(3,﹣18),理由見解析.

試題分析:(1)把點(diǎn)A代入解析式求出c和a,最后根據(jù)拋物線的對稱軸求出b,即可求出最后結(jié)果.
(2)①本題需根據(jù)題意列出S與t的關(guān)系式,再整理即可求出結(jié)果.
②本題需分三種情況:當(dāng)點(diǎn)R在BQ的左邊,且在PB下方時(shí);當(dāng)點(diǎn)R在BQ的左邊,且在PB上方時(shí);當(dāng)點(diǎn)R在BQ的右邊,且在PB上方時(shí),然后分別代入拋物線的解析式中,即可求出結(jié)果.
試題解析:(1)設(shè)拋物線的解析式為y=ax2+bx+c,
由題意知點(diǎn)A(0,﹣12),
所以c=﹣12,
又18a+c=0,
,
∵AB∥OC,且AB=6,
∴拋物線的對稱軸是x=,
∴b=﹣4,
所以拋物線的解析式為y=x2﹣4x﹣12;
(2)①S=·2t(6﹣t)=﹣t2+6t=﹣(t﹣3)2+9,(0<t<6),
②當(dāng)t=3時(shí),S取最大值為9.
這時(shí)點(diǎn)P的坐標(biāo)(3,﹣12),
點(diǎn)Q坐標(biāo)(6,﹣6),
若以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形,有如下三種情況:
(Ⅰ)當(dāng)點(diǎn)R在BQ的左邊,且在PB下方時(shí),點(diǎn)R的坐標(biāo)(3,﹣18),將(3,﹣18)代入拋物線的解析式中,滿足解析式,所以存在,點(diǎn)R的坐標(biāo)就是(3,﹣18),
(Ⅱ)當(dāng)點(diǎn)R在BQ的左邊,且在PB上方時(shí),點(diǎn)R的坐標(biāo)(3,﹣6),將(3,﹣6)代入拋物線的解析式中,不滿足解析式,所以點(diǎn)R不滿足條件.
(Ⅲ)當(dāng)點(diǎn)R在BQ的右邊,且在PB上方時(shí),點(diǎn)R的坐標(biāo)(9,﹣6),將(9,﹣6)代入拋物線的解析式中,不滿足解析式,所以點(diǎn)R不滿足條件.
綜上所述,點(diǎn)R坐標(biāo)為(3,﹣18).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

小明同學(xué)將直角三角板直角頂點(diǎn)置于平面直角坐標(biāo)系的原點(diǎn)O,兩直角邊與拋物線分別相交于A、B兩點(diǎn).小明發(fā)現(xiàn)交點(diǎn)A、B兩點(diǎn)的連線總經(jīng)過一個(gè)固定點(diǎn),則該點(diǎn)坐標(biāo)為            

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)平面內(nèi),O為原點(diǎn),拋物線經(jīng)過點(diǎn)A(6,0),且頂點(diǎn)B(m,6)在直線上.
(1)求m的值和拋物線的解析式;
(2)如在線段OB上有一點(diǎn)C,滿足,在x軸上有一點(diǎn)D(10,0),連接DC,且直線DC與y軸交于點(diǎn)E.
①求直線DC的解析式;
②如點(diǎn)M是直線DC上的一個(gè)動(dòng)點(diǎn),在x軸上方的平面內(nèi)有另一點(diǎn)N,且以O(shè)、E、M、N為頂點(diǎn)的四邊形是菱形,請直接寫出點(diǎn)N的坐標(biāo).
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+2ax+b的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C(0,),其頂點(diǎn)在直線y=-2x上.
(1)求a,b的值;
(2)寫出當(dāng)-2≤x≤2時(shí),二次函數(shù)y的取值范圍;
(3)以AC、CB為一組鄰邊作□ACBD,則點(diǎn)D關(guān)于x軸的對稱點(diǎn)D’是否在該二次函數(shù)的圖象上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(-2,4),過點(diǎn)A作AB⊥y軸,垂足為B,連接OA.

(1)求△OAB的面積;
(2)若拋物線y=-x2-2x+c經(jīng)過點(diǎn)A.
①求c的值;
②將拋物線向下平移m個(gè)單位,使平移后得到的拋物線頂點(diǎn)落在△OAB的內(nèi)部(不包括△OAB的邊界),求m的取值范圍(直接寫出答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān),李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈,已知這種節(jié)能燈的成本價(jià)為每件10元,出廠價(jià)為每件12元,每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系近似滿足一次函數(shù):y=-10x+500.
⑴李明在開始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為20元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
⑵設(shè)李明獲得的利潤為W(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?
⑶物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于25元,如果李明想要每月獲得的利潤不低于3000元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,以AC為直徑作⊙M,點(diǎn)是劣弧AO上一動(dòng)點(diǎn)(點(diǎn)與不重合).拋物線y=-經(jīng)過點(diǎn)A、C,與x軸交于另一點(diǎn)B,

(1)求拋物線的解析式及點(diǎn)B的坐標(biāo);
(2)在拋物線的對稱軸上是否存在一點(diǎn)P,是︱PA—PC︱的值最大;若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由。
(3)連于點(diǎn),延長,使,試探究當(dāng)點(diǎn)運(yùn)動(dòng)到何處時(shí),直線與⊙M相切,并請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)y=a(x+1)2-b(a≠0)有最小值,則a,b的大小關(guān)系為 (  )
A.a(chǎn)>bB.a(chǎn)<b
C.a(chǎn)=bD.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)A(1,2)和B(-2,5),試求出兩個(gè)二次函數(shù),使它們的圖象都經(jīng)過A、B兩點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案