如圖,拋物線的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知B點(diǎn)坐標(biāo)為(4,0).
(1)求拋物線的解析式;
(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標(biāo);
(3)若點(diǎn)M是線段BC下方的拋物線上一點(diǎn),求△MBC的面積的最大值,并求出此時(shí)M點(diǎn)的坐標(biāo).
(1)(2)該外接圓的圓心為AB的中點(diǎn),且坐標(biāo)為:(,0)(3)當(dāng)h最大(即點(diǎn)M到直線BC的距離最遠(yuǎn))時(shí),△ABC的面積最大,M(2,﹣3)
【解析】解:(1)∵B(4,0)在拋物線的圖象上
∴,即:。
∴拋物線的解析式為:。
(2)由(1)的函數(shù)解析式可求得:A(﹣1,0)、C(0,﹣2)。
∴OA=1,OC=2,OB=4。∴。
又∵OC⊥AB,∴△OAC∽△OCB!唷螼CA=∠OBC。
∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°。
∴△ABC為直角三角形,AB為△ABC外接圓的直徑。
∴該外接圓的圓心為AB的中點(diǎn),且坐標(biāo)為:(,0)。
(3)已求得:B(4,0)、C(0,﹣2),可得直線BC的解析式為:y=x﹣2。
設(shè)直線l∥BC,則該直線的解析式可表示為:y=x+b,當(dāng)直線l與拋物線只有一個(gè)交點(diǎn)時(shí),可列方程:x+b=,即: x2﹣4x﹣4﹣2b=0,且△=0。
∴16﹣4×(﹣4﹣2b)=0,解得b=4!嘀本l:y=x﹣4。
∵,當(dāng)h最大(即點(diǎn)M到直線BC的距離最遠(yuǎn))時(shí),△ABC的面積最大。
∴點(diǎn)M是直線l和拋物線的唯一交點(diǎn),有:
,解得:! M(2,﹣3)。
(1)該函數(shù)解析式只有一個(gè)待定系數(shù),只需將B點(diǎn)坐標(biāo)代入解析式中即可。
(2)根據(jù)拋物線的解析式確定A點(diǎn)坐標(biāo),然后通過(guò)證明△ABC是直角三角形來(lái)推導(dǎo)出直徑AB和圓心的位置,由此確定圓心坐標(biāo)。
(3)△MBC的面積可由表示,若要它的面積最大,需要使h取最大值,即點(diǎn)M到直線BC的距離最大,若設(shè)一條平行于BC的直線,那么當(dāng)該直線與拋物線有且只有一個(gè)交點(diǎn)時(shí),該交點(diǎn)就是點(diǎn)M。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
2 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇響水縣教研片九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,拋物線的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知點(diǎn)B坐標(biāo)為(4,0).
(1)求拋物線的解析式;
(2)判斷△ABC的形狀,說(shuō)出△ABC外接圓的圓心位置,并求出圓心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年湖北省中考數(shù)學(xué)預(yù)測(cè)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年廣東省深圳市育才二中中考數(shù)學(xué)一模試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省鹽城市濱海縣九年級(jí)下學(xué)期期末調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,拋物線的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知點(diǎn)B坐標(biāo)為(4,0).
(1)求拋物線的解析式;
(2)判斷△ABC的形狀,說(shuō)出△ABC外接圓的圓心位置,并求出圓心的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com