如圖,已知圓內(nèi)接四邊形ABCD的對(duì)角線(xiàn)AC、BD交于點(diǎn)N,點(diǎn)M在對(duì)角線(xiàn)BD上,且滿(mǎn)足∠BAM=∠DAN,∠BCM=∠DCN.
求證:(1)M為BD的中點(diǎn);
(2)

【答案】分析:(1)要證M為BD的中點(diǎn),即證BM=DM,由∠BAM=∠DAN,∠BCM=∠DCN,及圓周角的性質(zhì)易證明△BAM∽△CBM,△DAM∽△CDM得出比例的乘積形式,可證明BM=DM;
(2)欲證,可以通過(guò)平行線(xiàn)的性質(zhì)證明,需要延長(zhǎng)AM交圓于點(diǎn)P,連接CP,證明PC∥BD,得出比例式,相應(yīng)解決MP=CM的問(wèn)題即可.
解答:證明:
(1)根據(jù)同弧所對(duì)的圓周角相等,得∠DAN=∠DBC,∠DCN=∠DBA.
又∵∠DAN=∠BAM,∠BCM=∠DCN,
∴∠BAM=∠MBC,∠ABM=∠BCM.
∴△BAM∽△CBM,
,即BM2=AM•CM.①
又∠DCM=∠DCN+∠NCM=∠BCM+∠NCM=∠ACB=∠ADB,
∠DAM=∠MAC+∠DAN=∠MAC+∠BAM=∠BAC=∠CDM,
∴△DAM∽△CDM,
,即DM2=AM•CM.②
由式①、②得BM=DM,
即M為BD的中點(diǎn).

(2)如圖,延長(zhǎng)AM交圓于點(diǎn)P,連接CP.
∴∠BCP=∠PAB=∠DAC=∠DBC.
∵PC∥BD,
.③
又∵∠MCB=∠DCA=∠ABD,∠DBC=∠PCB,
∴∠ABC=∠MCP.
而∠ABC=∠APC,
則∠APC=∠MCP,
有MP=CM.④
由式③、④得
點(diǎn)評(píng):本題考查了相似三角形的性質(zhì),圓周角的性質(zhì),是一道較難的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知圓內(nèi)接四邊形ABCD中,對(duì)角線(xiàn)AD是⊙O的直徑,AB=BC=CD=2,E是
AD
的中點(diǎn),則△ADE的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知圓內(nèi)接四邊形ABCD的對(duì)角線(xiàn)AC、BD交于點(diǎn)N,點(diǎn)M在對(duì)角線(xiàn)BD上,且滿(mǎn)足∠BAM=∠DAN,∠精英家教網(wǎng)BCM=∠DCN.
求證:(1)M為BD的中點(diǎn);
(2)
AN
CN
=
AM
CM

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知圓內(nèi)接四邊形ABCD的對(duì)角線(xiàn)AC、BD交于點(diǎn)N,點(diǎn)M在對(duì)角線(xiàn)BD上,且滿(mǎn)足∠BAM=∠DAN,∠BCM=∠DCN.
求證:(1)M為BD的中點(diǎn);
(2)數(shù)學(xué)公式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第5章《中心對(duì)稱(chēng)圖形(二)》中考題集(57):5.7 正多邊形與圓(解析版) 題型:填空題

如圖,已知圓內(nèi)接四邊形ABCD中,對(duì)角線(xiàn)AD是⊙O的直徑,AB=BC=CD=2,E是的中點(diǎn),則△ADE的面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省寧波市慈溪中學(xué)保送生招生考試數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

如圖,已知圓內(nèi)接四邊形ABCD的對(duì)角線(xiàn)AC、BD交于點(diǎn)N,點(diǎn)M在對(duì)角線(xiàn)BD上,且滿(mǎn)足∠BAM=∠DAN,∠BCM=∠DCN.
求證:(1)M為BD的中點(diǎn);
(2)

查看答案和解析>>

同步練習(xí)冊(cè)答案