【題目】現(xiàn)有甲,乙兩種機器人都被用來搬運某體育館室內(nèi)裝潢材料甲型機器人比乙型機器人每小時少搬運30千克,甲型機器人搬運600千克所用的時間與乙型機器人搬運800千克所用的時間相同,兩種機器人每小時分別搬運多少千克?設(shè)甲型機器人每小時搬運x千克,根據(jù)題意,可列方程為( )
A. =B. =
C. =D. =
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店打出促銷廣告:最潮新款服裝30件,每件售價300元.若一次性購買不超過10件時,售價不變;若一次性購買超過10件時,每多買1件,所買的每件服裝的售價均降低3元.已知該服裝成本是每件200元,設(shè)顧客一次性購買服裝x件時,該網(wǎng)店從中獲利y元.
(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)顧客一次性購買多少件時,該網(wǎng)店從中獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形 ABCD 中,點 E,F 分別在 BC 和 AB 上,BE=3,AF=2,BF=4,將△ BEF 繞點 E 順時針旋轉(zhuǎn),得到△GEH,當點 H 落在 CD 邊上時,F,H 兩點之間的距離為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在Rt△ABC中,∠C=90°,點O在邊BC上,以點O為圓心,OB為半徑的圓經(jīng)過點A,過點A作直線AD,使∠CAD=2∠B.
(1)判斷直線AD與⊙O的位置關(guān)系,并說明理由;
(2)若OB=4,∠CAD=60°,請直接寫出圖中弦AB與圍成的陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖中的小方格都是邊長為1的正方形,△ABC的頂點坐標分別為A(0,1),B(0,2),C(2,0).
(1)請畫出△A1BlCl,使△A1BlCl與△ABC是以O為位似中心的位似圖形,且位似比為2:1,并使這兩個三角形在位似中心同側(cè);
(2)將△A1BlC1繞O點逆時針旋轉(zhuǎn)90°得到△A2B2C2,請畫出旋轉(zhuǎn)后的△A2B2C2,并求出線段A1B1在旋轉(zhuǎn)過程中所掃過的圖形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA是⊙O的半徑,點E為圓內(nèi)一點,且OA⊥OE,AB是⊙O的切線,EB交⊙O于點F,BQ⊥AF于點Q.
(1)如圖1,求證:OE∥AB;
(2)如圖2,若AB=AO,求的值;
(3)如圖3,連接OF,∠EOF的平分線交射線AF于點P,若OA=2,cos∠PAB=,求OP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,點D在邊AC上,BD的垂直平分線交CA的延長線于點E,交BD于點F,聯(lián)結(jié)BE,ED2=EAEC.
(1)求證:∠EBA=∠C;
(2)如果BD=CD,求證:AB2=ADAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖1,已知水龍頭噴水的初始速度v0可以分解為橫向初始速度vx和縱向初始速度vy,θ是水龍頭的仰角,且v02=vx2+vy2.圖2是一個建在斜坡上的花圃場地的截面示意圖,水龍頭的噴射點A在山坡的坡頂上(噴射點離地面高度忽略不計),坡頂?shù)你U直高度OA為15米,山坡的坡比為.離開水龍頭后的水(看成點)獲得初始速度v0米/秒后的運動路徑可以看作是拋物線,點M是運動過程中的某一位置.忽略空氣阻力,實驗表明:M與A的高度之差d(米)與噴出時間t(秒)的關(guān)系為d=vyt-5t2;M與A的水平距離為vxt米.已知該水流的初始速度v0為15米/秒,水龍頭的仰角θ為53°.
(1)求水流的橫向初始速度vx和縱向初始速度vy;
(2)用含t的代數(shù)式表示點M的橫坐標x和縱坐標y,并求y與x的關(guān)系式(不寫x的取值范圍);
(3)水流在山坡上的落點C離噴射點A的水平距離是多少米?若要使水流恰好噴射到坡腳B處的小樹,在相同仰角下,則需要把噴射點A沿坡面AB方向移動多少米?(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小峰和小軒用兩枚質(zhì)地均勻的骰子做游戲,規(guī)則如下:每人隨機擲兩枚骰子一次(若擲出的兩枚骰子摞在一起,則重擲),點數(shù)和大的獲勝;點數(shù)和相同為平局.
依據(jù)上述規(guī)則,解答下列問題:
(1)隨機擲兩枚骰子一次,用列表法或樹狀圖法求點數(shù)和為10的概率;
(2)小峰先隨機擲兩枚骰子一次,點數(shù)和是10,求小軒隨機擲兩枚骰子一次,勝小峰的概率.(骰子:六個面分別有1、2、3、4、5、6個小圓點的立方塊.點數(shù)和:兩枚骰子朝上的點數(shù)之和.)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com