【題目】已知:如圖,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),連接PA、PB、PC.
(1)將△PAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△P′CB,若AB=m,PB=n(n<m).求△PAB旋轉(zhuǎn)過(guò)程中邊PA掃過(guò)區(qū)域(陰影部分)的面積;
(2)若PA= ,PB=2,∠APB=135°,求PC的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為發(fā)展電信事業(yè),方便用戶,電信公司對(duì)移動(dòng)電話采取不同的收費(fèi)方式,其中,所使用的“便民卡”與“如意卡”在某市范圍內(nèi)每月(30天)的通話時(shí)間x(min)與通話費(fèi)y(元)的關(guān)系如圖所示:
(1)分別求出通話費(fèi)y1,y2與通話時(shí)間x之間的函數(shù)關(guān)系式;
(2)請(qǐng)幫用戶計(jì)算,在一個(gè)月內(nèi)使用哪一種卡便宜.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的推理.
已知:如圖,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.
試說(shuō)明:∠EGF=90°.
解:因?yàn)?/span>HG∥AB(已知),
所以∠1=∠3( ).
又因?yàn)?/span>HG∥CD(已知),
所以∠2=∠4( ).
因?yàn)?/span>AB∥CD(已知),
所以∠BEF+ =180°( ).
又因?yàn)?/span>EG平分∠BEF(已知),
所以∠1=∠ ( ).
又因?yàn)?/span>FG平分∠EFD(已知),
所以∠2=∠ ( ),
所以∠1+∠2=( + ).
所以∠1+∠2=90°.
所以∠3+∠4=90°( ),即∠EGF=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于點(diǎn)C,AC平分∠DAB.
(1)求證:AD⊥CD;
(2)若AD=2,AC=,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn).
(1)求b、c的值;
(2)P為拋物線上的點(diǎn),且滿足S△PAB=8,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,這是一個(gè)計(jì)算程序示意圖.
規(guī)定:從“輸入x”到“加上5”為一次運(yùn)算.
例如:輸入“x=3”,則“,6+5=11.”(完成一次運(yùn)算)
因?yàn)?/span>,所以輸出結(jié)果y=11.
(1)當(dāng)x=2時(shí),y= ;當(dāng)x=-3時(shí),y= .
(2)若程序進(jìn)行了一次運(yùn)算,輸出結(jié)果y=7,則輸入的x值為 .
(3)若輸入x后,需要經(jīng)過(guò)兩次運(yùn)算才輸出結(jié)果y,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將紙片△ABC沿DE折疊使點(diǎn)A落在點(diǎn)A’處.
(感知)如圖①,點(diǎn)A’落在四邊形BCDE的邊BE上,則∠A與∠1之間的數(shù)量關(guān)系是 .
(探究)如圖②,若A’點(diǎn)落在四邊形BCDE的內(nèi)部,則∠A與∠1+∠2之間存在怎樣的數(shù)量關(guān)系?并說(shuō)明理由?
(拓展)如圖③,點(diǎn)A’落在四邊形BCDE的外部,若∠1=80°,∠2=24°,則∠A的大小為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在直角坐標(biāo)系中,已知、、三點(diǎn),其中、、滿足關(guān)系式, ≤.
(1)=_______; =________; =_______.
(2)如果點(diǎn)是第二象限內(nèi)的一個(gè)動(dòng)點(diǎn),坐標(biāo)為.將四邊形的面積用表示,請(qǐng)你寫(xiě)出關(guān)于的函數(shù)表達(dá)式,并寫(xiě)出自變量的取值范圍.
(3)在(2)的條件下,是否存在點(diǎn),使得四邊形的面積與的面積相等?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直線l:y=x+1交y軸于點(diǎn)A1,在x軸正方向上取點(diǎn)B1,使OB1=OA1;過(guò)點(diǎn)B1作A2B1⊥x軸,交l于點(diǎn)A2,在x軸正方向上取點(diǎn)B2,使B1B2=B1A2;過(guò)點(diǎn)B2作A3B2⊥x軸,交l于點(diǎn)A3,…記△OA1B1面積為S1,△B1A2B2面積為S2,△B2A3B3面積為S3,…,則S8等于( 。
A.28B.213C.216D.218
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com