解:閱讀材料:
∵△ADE繞點(diǎn)A順時針旋轉(zhuǎn)90°得到△ABG,
∴∠GAB=∠EAD,
∵四邊形ABCD是正方形,
∴∠BAD=90°,
∵∠EAF=45°,
∴∠GAF=∠GAB+∠BAF,
=∠EAD+∠BAF,
=∠BAD-∠EAF,
=90°-45°,
=45°;
(1)如圖3,過點(diǎn)A作AF⊥CB交CB的延長線于點(diǎn)F,
∵AD∥BC,∠D=90°,AD=CD,
∴四邊形AFCD是正方形,
設(shè)BE=x,
根據(jù)小偉的結(jié)論,BF=BE-DE=x-4,
∵CD=10,DE=4,
∴CE=CD-DE=10-4=6,
BC=CF-BF=10-(x-4)=14-x,
在Rt△BCE中,BC
2+CE
2=BE
2,
即(14-x)
2+6
2=x
2,
整理得,-28x=-232,
解得x=
,
即BE=
;
(2)如圖4,過點(diǎn)A作AE⊥x軸于E,過點(diǎn)C作CF⊥x軸于F,
在正方形ABCD中,AB=BC,∠ABC=90°,
∵∠ABE+∠CBF=180°-90°=90°,
∠ABE+∠BAE=90°,
∴∠BAE=∠CBF,
在△ABE和△BCF中,
∵
,
∴△ABE≌△BCF(AAS),
∴AE=BF,BE=CF,
∵點(diǎn)A(-3,2),C(x,y),
∴OE=3,AE=2,OF=x,CF=y,
∴OB=BE-OE=y-3,
OB=OF-BF=x-2,
∴y-3=x-2,
整理得,y=x+1.
故答案為:45°;
;x+1.
分析:閱讀材料:根據(jù)旋轉(zhuǎn)只改變圖形的位置不改變圖形的形狀與大小可得∠GAB=∠EAD,然后求出∠GAF=∠BAF+∠EAD,再根據(jù)∠EAF=45°計(jì)算即可得解;
(1)過點(diǎn)A作AF⊥CB交CB的延長線于點(diǎn)F,可得四邊形AFCD是正方形,然后設(shè)BE=x,根據(jù)小偉的結(jié)論表示出BF,再求出CE、BC,然后在Rt△BCE中,利用勾股定理列式進(jìn)行計(jì)算即可得解;
(2)過點(diǎn)A作AE⊥x軸于E,過點(diǎn)C作CF⊥x軸于F,然后利用“AAS”證明△ABE和△BCF全等,根據(jù)全等三角形對應(yīng)邊相等可得AE=BF,BE=CF,再根據(jù)點(diǎn)A、C的坐標(biāo)表示出OB,整理即可得解.
點(diǎn)評:本題考查了旋轉(zhuǎn)的性質(zhì),坐標(biāo)與圖形的性質(zhì),全等三角形的判定與性質(zhì),正方形的性質(zhì),(2)作輔助線補(bǔ)充完整正方形是解題的關(guān)鍵,(3)作輔助線構(gòu)造全等三角形是解題的關(guān)鍵.