作業(yè)寶如圖,在△ABC中,AB>AC,∠1=∠2,P為AD上任意一點.求證:AB-AC>PB-PC.

證明:如圖,在AB上截取AE,使AE=AC,連接PE,
∵AD是∠BAC的平分線,
∴∠BAD=∠CAD,
在△AEP和△ACP中,
,
∴△AEP≌△ACP(SAS),
∴PE=PC,
在△PBE中,BE>PB-PE,即AB-AC>PB-PC.
分析:在AB上取AE=AC,然后證明△AEP和△ACP全等,根據(jù)全等三角形對應邊相等得到PC=PE,再根據(jù)三角形的任意兩邊之差小于第三邊證明即可.
點評:本題考查的是軸對稱的性質,涉及到全等三角形的判定和全等三角形對應邊相等的性質以及三角形的三邊關系,作輔助線構造全等三角形是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案