【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑畫弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正確的是( 。
A. ①②③ B. ①②④ C. ①③④ D. ②③④
科目:初中數學 來源: 題型:
【題目】△ABC中,∠A=90°,點D在線段BC上(端點B除外),
∠EDB=∠C,BE⊥DE于點E,DE與AB相交于點F,過F作FM∥AC交BD于M.
(1)當AB=AC時(如圖1),求證:①FM=MD;②FD=2BE;
(2)當AB=kAC時(k>0,如圖2),用含k的式子表示線段FD與BE之間的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將拋物線y=x2向右平移2個單位,再向上平移1個單位,所得拋物線相應的函數表達式是( )
A.y=(x+2)2+1
B.y=(x+2)2﹣1
C.y=(x﹣2)2+1
D.y=(x﹣2)2﹣1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知F,G是OA上兩點,M,N是OB上兩點,且FG=MN,△PFG和△PMN的面積相等.試判斷點P是否在∠AOB的平分線上,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,BG=4,則△CEF的周長為( )
A. 8 B. 9.5 C. 10 D. 11.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖2,“和諧號”高鐵列車的小桌板收起時近似看作與地面垂直,展開小桌板使桌面保持水平時如圖1,小桌板的邊沿O點與收起時桌面頂端A點的距離OA=75厘米,此時CB⊥AO,∠AOB=∠ACB=37°,且支架長OB與支架長BC的長度之和等于OA的長度.
(1)求∠CBO的度數;
(2)求小桌板桌面的寬度BC.(參考數據sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某體育場看臺的坡面AB與地面的夾角是37°,看臺最高點B到地面的垂直距離BC為2.4米,看臺正前方有一垂直于地面的旗桿DE,在B點用測角儀測得旗桿的最高點E的仰角為33°,已知測角儀BF的高度為1.2米,看臺最低點A與旗桿底端D之間的距離為15米(C,A,D在同一條直線上).
(1)求看臺最低點A到最高點B的坡面距離AB;
(2)一面紅旗掛在旗桿上,固定紅旗的上下兩個掛鉤G、H之間的距離為1.2米,下端掛鉤H與地面的距離為1米,要求用30秒的時間將紅旗升到旗桿的頂端,求紅旗升起的平均速度(計算結果保留兩位小數)(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com