矩形ABCD與矩形EFGH滿足什么條件才相似?

如圖在一塊長和寬分別為a和b(a>b)的長方形黑板的四周,鑲上寬度為x的木條,得到一個(gè)新的長方形,如圖.試用含a,b,x的代數(shù)式表示新長方形的長和寬,并判斷原來的長方形與新長方形是否相似.為什么?

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•永春縣質(zhì)檢)在平面直角坐標(biāo)系中,矩形ABCD與等邊△EFG按如圖所示放置:點(diǎn)B、G與坐標(biāo)原點(diǎn)O重合,F(xiàn)、B、G、C在x軸上,AB=3cm,BC=4
3
cm,EF=2
3
cm.
(1)求△EFG的周長;
(2)△EFG沿x軸向右以每秒
3
cm的速度運(yùn)動,當(dāng)點(diǎn)G移至與點(diǎn)C重合時(shí),△EFG即停止運(yùn)動,設(shè)△EFG的運(yùn)動時(shí)間為t秒.
①若△EFG移動過程中,與矩形ABCD的重合部分的面積Scm2,求S與t的函數(shù)關(guān)系式;
②當(dāng)△EFG移動(
3
+1)秒時(shí),E點(diǎn)到達(dá)P點(diǎn)的位置,一開口向下的拋物線y=
1
a
x2+bx
過P、O兩點(diǎn)且與射線AD相交于點(diǎn)H,與x軸的另一個(gè)交點(diǎn)為Q,若OQ+PH為定值,試求出定值,并求出相應(yīng)的a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知矩形ABCD中,邊AB=2,邊AD=1,且AB、AD分別在x軸、y軸的正半軸上,點(diǎn)A與坐標(biāo)原點(diǎn)重合.將矩形折疊,使點(diǎn)A落在邊DC上,設(shè)點(diǎn)A′是點(diǎn)A落在邊DC上的對應(yīng)點(diǎn).
(1)當(dāng)矩形ABCD沿直線y=-
12
x+b折疊時(shí)(如圖1),求點(diǎn)A′的坐標(biāo)和b的值;
精英家教網(wǎng)
(2)當(dāng)矩形ABCD沿直線y=kx+b折疊時(shí),
①求點(diǎn)A′的坐標(biāo)(用k表示);求出k和b之間的關(guān)系式;
②如果我們把折痕所在的直線與矩形的位置分為如圖2、3、4所示的三種情形,請你分別寫出每種情形時(shí)k的取值范圍.(將答案直接填在每種情形下的橫線上)k的取值范圍是
 
;k的取值范圍是
 
;k的取值范圍是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,矩形ABCD與等邊△EFG按如圖所示放置:點(diǎn)B、G與坐標(biāo)原點(diǎn)O重合,F(xiàn)、B、G、C在x軸上,AB=3cm,BC=數(shù)學(xué)公式cm,EF=2數(shù)學(xué)公式cm.
(1)求△EFG的周長;
(2)△EFG沿x軸向右以每秒數(shù)學(xué)公式cm的速度運(yùn)動,當(dāng)點(diǎn)G移至與點(diǎn)C重合時(shí),△EFG即停止運(yùn)動,設(shè)△EFG的運(yùn)動時(shí)間為t秒.
①若△EFG移動過程中,與矩形ABCD的重合部分的面積Scm2,求S與t的函數(shù)關(guān)系式;
②當(dāng)△EFG移動(數(shù)學(xué)公式+1)秒時(shí),E點(diǎn)到達(dá)P點(diǎn)的位置,一開口向下的拋物線數(shù)學(xué)公式過P、O兩點(diǎn)且與射線AD相交于點(diǎn)H,與x軸的另一個(gè)交點(diǎn)為Q,若OQ+PH為定值,試求出定值,并求出相應(yīng)的a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年華師大版中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

在平面直角坐標(biāo)系中,矩形ABCD與等邊△EFG按如圖所示放置:點(diǎn)B、G與坐標(biāo)原點(diǎn)O重合,F(xiàn)、B、G、C在x軸上,AB=3cm,BC=cm,EF=2cm.
(1)求△EFG的周長;
(2)△EFG沿x軸向右以每秒cm的速度運(yùn)動,當(dāng)點(diǎn)G移至與點(diǎn)C重合時(shí),△EFG即停止運(yùn)動,設(shè)△EFG的運(yùn)動時(shí)間為t秒.
①若△EFG移動過程中,與矩形ABCD的重合部分的面積Scm2,求S與t的函數(shù)關(guān)系式;
②當(dāng)△EFG移動(+1)秒時(shí),E點(diǎn)到達(dá)P點(diǎn)的位置,一開口向下的拋物線過P、O兩點(diǎn)且與射線AD相交于點(diǎn)H,與x軸的另一個(gè)交點(diǎn)為Q,若OQ+PH為定值,試求出定值,并求出相應(yīng)的a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年福建省泉州市永春縣初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系中,矩形ABCD與等邊△EFG按如圖所示放置:點(diǎn)B、G與坐標(biāo)原點(diǎn)O重合,F(xiàn)、B、G、C在x軸上,AB=3cm,BC=cm,EF=2cm.
(1)求△EFG的周長;
(2)△EFG沿x軸向右以每秒cm的速度運(yùn)動,當(dāng)點(diǎn)G移至與點(diǎn)C重合時(shí),△EFG即停止運(yùn)動,設(shè)△EFG的運(yùn)動時(shí)間為t秒.
①若△EFG移動過程中,與矩形ABCD的重合部分的面積Scm2,求S與t的函數(shù)關(guān)系式;
②當(dāng)△EFG移動(+1)秒時(shí),E點(diǎn)到達(dá)P點(diǎn)的位置,一開口向下的拋物線過P、O兩點(diǎn)且與射線AD相交于點(diǎn)H,與x軸的另一個(gè)交點(diǎn)為Q,若OQ+PH為定值,試求出定值,并求出相應(yīng)的a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案