分式
5x2+30xy+51y2
x2+6xy+11y2
的最小值是( 。
分析:把分子先整理成分母的倍數(shù)加上4y2的形式,然后約分并整理成分子是常數(shù)的形式,分母再利用配方法配方,然后根據(jù)二次函數(shù)的最值問(wèn)題進(jìn)行解答.
解答:解:
5x2+30xy+51y2
x2+6xy+11y2

=
5x2+30xy+55y2-4y2
x2+6xy+11y2
,
=5-
4y2
(x+3y)2+ 2y2
,
=5-
4
(
x
y
+3)
2
+2

當(dāng)
x
y
=-3時(shí),原式取最小值,最小值為5-
4
2
=3.
故答案為:3.
點(diǎn)評(píng):本題考查了完全平方式與約分,把原式進(jìn)行整理是解題的關(guān)鍵,本題難度較大,整理時(shí)要仔細(xì)小心.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

同步練習(xí)冊(cè)答案