【題目】解方程(組)或不等式(組)并把第(4)的解集表示在數(shù)軸上.

1;

2

3

4.

【答案】1;(2;(3x;(4)﹣2x1,在數(shù)軸表示如圖所示,見解析.

【解析】

1)根據(jù)解二元一次方程組的方法可以解答本題;

2)根據(jù)加減消元法可以解答此方程組;

3)根據(jù)解一元一次不等式的方法可以解答本題;

4)根據(jù)解一元一次不等式組的方法可以解答此不等式組,并在數(shù)軸上表示出相應(yīng)的解集.

1

×2+②,得

7x14

解得,x2,

x2代入①,得

y1,

故原方程組的解是

2

×3+×2,得

19x114,

解得,x6

x6代入①,得

y=﹣0.5,

故原方程組的解是

3

方程兩邊同乘以12,得

2x+1)﹣12≥32x5

去括號,得

2x+212≥6x15

移項及合并同類項,得﹣4x≥5,

系數(shù)化為1,得x≤;

4

由不等式①,得x≤1

由不等式②,得x>﹣2,

故原不等式組的解集是﹣2x≤1,在數(shù)軸表示如下圖所示,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知動點P以每秒2㎝的速度沿圖甲的邊框按從的路徑移動,相應(yīng)的ABP的面積S關(guān)于時間t的函數(shù)圖象如圖乙.若AB=6,試回答下列問題:

(1)圖甲中的BC長是多少?

(2)圖乙中的a是多少?

(3)圖甲中的圖形面積的多少?

(4)圖的b是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點EAB上,點DBC上,BD=BE,∠BAD=∠BCE,ADCE相交于點F,試判斷△AFC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國中東部地區(qū)霧霾天氣趨于嚴重,環(huán)境治理已刻不容緩.我市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進價是200/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當售價是400/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300/臺,代理銷售商每月要完成不低于450臺的銷售任務(wù).

1)試確定月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;

2)當售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=10cm,BDAC于點D,且BD=8cm.點M從點A出發(fā),沿AC的方向勻速運動,速度為2cm/秒;同時直線PQ由點B出發(fā),沿BA的方向勻速運動,速度為1cm/秒,運動過程中始終保持PQAC,直線PQAB于點P、交BC于點Q、交BD于點F.連接PM,設(shè)運動時間為t秒(0t5).

1)當t為何值時,四邊形PQCM是平行四邊形?

2)設(shè)四邊形PQCM的面積為ycm2),求yt之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線過點且與軸交于點,把點向左平移2個單位,再向上平移4個單位,得到點.過點且與平行的直線交軸于點

1)求直線CD的解析式;

2)直線ABCD交于點E,將直線CD沿EB方向平移,平移到經(jīng)過點B的位置結(jié)束,求直線CD在平移過程中與x軸交點的橫坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點P從點A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運動到點B時停止(不含點A和點B),則ABP的面積S隨著時間t變化的函數(shù)圖象大致是(  )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的一條對角線.

1)實踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標明相應(yīng)字母;(保留作圖痕跡,不寫作法)

①作的垂直平分線分別交,,兩點,交于點

②連接,;

2)猜想與證明:試猜想四邊形是哪種特殊的四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店銷售甲、乙兩種圓規(guī),當銷售5只甲種、1只乙種圓規(guī),可獲利潤25元,銷售6只甲種、3只乙種圓規(guī),可獲利潤39元.

1問該文具店銷售甲、乙兩種圓規(guī),每只的利潤分別是多少元?

21中,文具店共銷售甲、乙兩種圓規(guī)50只,其中甲種圓規(guī)為a只,求文具店所獲得利潤Pa的函數(shù)關(guān)系式,并求當a≥30P的最大值.

查看答案和解析>>

同步練習冊答案