如圖,在△ABC中,AB=AC=10cm,BD⊥AC于點(diǎn)D且CD=2cm,則BC的長(zhǎng)是( 。
分析:首先根據(jù)圖形求得AD=8cm;然后在Rt△ABD中,由勾股定理知BD=
AB2-AD2
=6cm;最后在Rt△CBD中,由勾股定理知BC=
BD2+CD2
=2
10
cm.
解答:解:∵AB=AC=10cm,CD=2cm,
∴AD=AC-CD=8cm.
∵BD⊥AC,
∴∠BDC=∠BDA=90°.
在Rt△ABD中,AB=10m,AD=8cm,則由勾股定理知BD=
AB2-AD2
=6cm.
在Rt△CBD中,BD=6m,CD=2cm,則由勾股定理知BC=
BD2+CD2
=2
10
cm.
故選C.
點(diǎn)評(píng):本題考查了勾股定理、等腰三角形的性質(zhì).勾股定理應(yīng)用的前提條件是在直角三角形中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線(xiàn),畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線(xiàn)分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案