如圖,在?ABCD中,AB=3,AD=4,∠ABC=60°,過(guò)BC的中點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,與DC的延長(zhǎng)線相交于點(diǎn)H,則△DEF的面積是   
【答案】分析:根據(jù)平行四邊形的性質(zhì)得到AB=CD=3,AD=BC=4,求出BE、BF、EF,根據(jù)相似得出CH=1,EH=,根據(jù)三角形的面積公式求△DFH的面積,即可求出答案.
解答:解:∵四邊形ABCD是平行四邊形,
∴AD=BC=4,AB∥CD,AB=CD=3,
∵E為BC中點(diǎn),
∴BE=CE=2,
∵∠B=60°,EF⊥AB,
∴∠FEB=30°,
∴BF=1,
由勾股定理得:EF=
∵AB∥CD,
∴△BFE∽△CHE,
====1,
∴EF=EH=,CH=BF=1,
∵S△DHF=DH•FH=×(1+3)×2=4,
∴S△DEF=S△DHF=2,
故答案為:2
點(diǎn)評(píng):本題主要考查對(duì)平行四邊形的性質(zhì),平行線的性質(zhì),勾股定理,含30度角的直角三角形,三角形的面積,三角形的內(nèi)角和定理等知識(shí)點(diǎn)的理解和掌握,能綜合運(yùn)用這些性質(zhì)進(jìn)行計(jì)算是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AB=
29
,AC=4,BD=10.
問(wèn):(1)AC與BD有什么位置關(guān)系?說(shuō)明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點(diǎn)E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•長(zhǎng)春一模)感知:如圖①,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BA、AD的延長(zhǎng)線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請(qǐng)證明;如果不全等,請(qǐng)說(shuō)明理由.
拓展:如圖③,在?ABCD中,AD=BD,點(diǎn)O是AD邊的垂直平分線與BD的交點(diǎn),點(diǎn)E、F分別在OA、AD的延長(zhǎng)線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•犍為縣模擬)甲題:已知關(guān)于x的一元二次方程x2=2(1-m)x-m2的兩實(shí)數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設(shè)y=x1+x2,當(dāng)y取得最小值時(shí),求相應(yīng)m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點(diǎn)E,BF⊥CD于點(diǎn)F,AC與BE、BF分別交于點(diǎn)G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點(diǎn)O,連接CE,則△CBE的周長(zhǎng)是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習(xí)冊(cè)答案