7、已知點P既在直線y=-3x-2上,又在直線y=2x+8上,則P點的坐標(biāo)為
(-2,4)
分析:可設(shè)此點的坐標(biāo)為(a,b)分別代入解析式求解方程組即可.
解答:解:根據(jù)題意,設(shè)點P的坐標(biāo)為(a,b),
代入兩個解析式可得,b=-3a-2①,b=2a+8②,
由①②可解得:a=-2,b=4,
∴P點的坐標(biāo)為(-2,4).
點評:本題考查了一次函數(shù)圖象上的點的坐標(biāo)特征,是基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,拋物線y=-x2+2x+c與y軸交于點D(0,3).
(1)直接寫出c的值;
(2)若拋物線與x軸交于A、B兩點(點B在點A的右邊),頂點為C點,求直線BC的解析式;
(3)已知點P是直線BC上一個動點,
①當(dāng)點P在線段BC上運動時(點P不與B、C重合),過點P作PE⊥y軸,垂足為E,連接BE.設(shè)點P的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
②試探索:在直線BC上是否存在著點P,使得以點P為圓心,半徑為r的⊙P,既與拋物線的對稱軸相切,又與以點C為圓心,半徑為1的⊙C相切?如果存在,試求r的值,并直接寫出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

已知點P既在直線y=-3x-2上,又在直線y=2x+8上,則P點的坐標(biāo)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知點P既在直線y=-3x-2上,又在直線y=2x+8上,則P點的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年福建省泉州市南安市初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在直角坐標(biāo)系中,拋物線y=-x2+2x+c與y軸交于點D(0,3).
(1)直接寫出c的值;
(2)若拋物線與x軸交于A、B兩點(點B在點A的右邊),頂點為C點,求直線BC的解析式;
(3)已知點P是直線BC上一個動點,
①當(dāng)點P在線段BC上運動時(點P不與B、C重合),過點P作PE⊥y軸,垂足為E,連接BE.設(shè)點P的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
②試探索:在直線BC上是否存在著點P,使得以點P為圓心,半徑為r的⊙P,既與拋物線的對稱軸相切,又與以點C為圓心,半徑為1的⊙C相切?如果存在,試求r的值,并直接寫出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案