【題目】為評估九年級學生的學習成績狀況,以應(yīng)對即將到來的中考做好教學調(diào)整,某中學抽取了部分參加考試的學生的成績作為樣本分析,繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息解答下列問題:

1)求樣本中成績類別為“中”的人數(shù),并將條形統(tǒng)計圖補充完整;

2)該校九年級共有1000人參加了這次考試,請估算該校九年級共有多少名學生的數(shù)學成績達到優(yōu)秀?

【答案】110(人),見解析;(2)估計該校九年級共有200名學生的數(shù)學成績可以達到優(yōu)秀.

【解析】

1)先根據(jù)成績類別為的人數(shù)和所占的百分比計算出樣本容量為50,然后用成績類別為的人數(shù)所占百分比乘以50即可,再將條形統(tǒng)計圖補充完整;

2)先計算出成績類別為的人數(shù)所占的百分比,然后乘以2000即可.

解:(1)樣本容量為8÷16%50

所以成績類別為的人數(shù)等于50×20%10(人);

補充條形統(tǒng)計圖如圖;

21000××100%200,

所以估計該校九年級共有200名學生的數(shù)學成績可以達到優(yōu)秀.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在由邊長為 1 個單位長度的小正方形組成的網(wǎng)格中,建立平面直角坐標系 A(1,7), B(63) C(2,3)

1)將ABC 繞格點 P(1,1) 順時針旋轉(zhuǎn)90,得到 ABC, 畫出 ABC,并寫出下列各點坐標: A(   ), B(    , ), C( );

2)找格點 M ,連CM ,使CM AB ,則點 M 的坐標為( );

3)找格點 N ,連 BN ,使 BN AC ,則點 N 的坐標為( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)yx+4的圖象與反比例函數(shù)y(k為常數(shù)且k0)的圖象交于A(1,a)B兩點,與x軸交于點C

(1)a,k的值及點B的坐標;

(2)若點Px軸上,且SACPSBOC,直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtAOB的平分線ON上依次取點C,F(xiàn),M,過點CDEOC,分別交OA,OB于點D,E,以FM為對角線作菱形FGMH.已知∠DFE=GFH=120°,F(xiàn)G=FE,設(shè)OC=x,圖中陰影部分面積為y,則yx之間的函數(shù)關(guān)系式是( )

A. y= B. y= C. y=2 D. y=3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為做好食堂的服務(wù)工作,某學校食堂對學生最喜愛的菜肴進行了抽樣調(diào)查,下面試根據(jù)收集的數(shù)據(jù)繪制的統(tǒng)計圖(不完整):

(1)參加抽樣調(diào)查的學生數(shù)是______人,扇形統(tǒng)計圖中“大排”部分的圓心角是______°;

(2)把條形統(tǒng)計圖補充完整;

(3)若全校有3000名學生,請你根據(jù)以上數(shù)據(jù)估計最喜愛“烤腸”的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】筆直的海岸線上依次有A,B,C三個港口,甲船從A港口出發(fā),沿海岸線勻速駛向C港口,1小時后乙船從B港口出發(fā),沿海岸線勻速駛向A港口,兩船同時到達目的地.甲船的速度是乙船的1.25倍,甲、乙兩船與B港口的距離ykm)與甲船行駛時間xh)之間的函數(shù)關(guān)系如圖所示.給出下列說法:①A,B港口相距400km;②甲船的速度為100km/h;③BC港口相距200km;④乙船出發(fā)4h時,兩船相距220km.其中正確的個數(shù)是(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,以為直徑的圓于點,過點于點,交的延長線于點

1)求證:

2)求證:是圓的切線;

3)若圓的半徑為3,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線

(1)拋物線的對稱軸為直線________.

(2)當時,函數(shù)值的取值范圍是,求的值.

(3)當時,解決下列問題.

①拋物線上一點軸的距離為6,求點的坐標.

②將該拋物線在間的部分記為,將在直線下方的部分沿翻折,其余部分保持不變,得到的新圖象記為,設(shè)的最高點、最低點的縱坐標分別為、,若,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠ACB90°,ACCB2,以BC為邊向外作正方形BCDE,動點MA點出發(fā),以每秒1個單位的速度沿著ACD的路線向D點勻速運動(M不與A、D重合);過點M作直線lAD,l與路線ABD相交于N,設(shè)運動時間為t秒:

1)填空:當點MAC上時,BN   (用含t的代數(shù)式表示);

2)當點MCD上時(含點C),是否存在點M,使DEN為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由;

3)過點NNFED,垂足為F,矩形MDFNABD重疊部分的面積為S,求S的最大值.

查看答案和解析>>

同步練習冊答案