【題目】為了保證人們上下樓的安全,樓梯踏步的寬度和高度都要加以限制.中小學(xué)樓梯寬度的范圍是260mm300mm含(300mm),高度的范圍是120mm150mm(含150mm).如圖是某中學(xué)的樓梯扶手的截面示意圖,測量結(jié)果如下:AB,CD分別垂直平分踏步EFGH,各踏步互相平行,ABCD,AC900mm,∠ACD65°,試問該中學(xué)樓梯踏步的寬度和高度是否符合規(guī)定.(結(jié)果精確到1mm,參考數(shù)據(jù):sin65°≈0.906,cos65°≈0.423

【答案】該中學(xué)樓梯踏步的寬度和高度都符合規(guī)定.

【解析】

根據(jù)題意,作出合適的輔助線,然后根據(jù)銳角三角函數(shù)即可求得BMDM的長,然后計(jì)算出該中學(xué)樓梯踏步的寬度和高度,再與規(guī)定的比較大小,即可解答本題.

解:連接BD,作DMAB于點(diǎn)M,

ABCDAB,CD分別垂直平分踏步EF,GH,

ABCD,ABCD,

∴四邊形ABCD是平行四邊形,

∴∠C=∠ABDACBD,

∵∠C65°,AC900,

∴∠ABD65°,BD900,

BMBDcos65°=900×0.423381DMBDsin65°=900×0.906815,

381÷3127,120127150,

∴該中學(xué)樓梯踏步的高度符合規(guī)定,

815÷3272260272300,

∴該中學(xué)樓梯踏步的寬度符合規(guī)定,

由上可得,該中學(xué)樓梯踏步的寬度和高度都符合規(guī)定.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】紅樹林學(xué)校在七年級(jí)新生中舉行了全員參加的防溺水安全知識(shí)競賽,試卷題目共10題,每題10分.現(xiàn)分別從三個(gè)班中各隨機(jī)取10名同學(xué)的成績(單位:分),收集數(shù)據(jù)如下:

1班:90,70,8080,80,80,80,9080,100

2班:70,8080,80,6090,9090,100,90;

3班:90,6070,8080,80,8090,100100

整理數(shù)據(jù):

分?jǐn)?shù)

人數(shù)

班級(jí)

60

70

80

90

100

1

0

1

6

2

1

2

1

1

3

1

3

1

1

4

2

2

分析數(shù)據(jù):

平均數(shù)

中位數(shù)

眾數(shù)

1

83

80

80

2

83

3

80

80

根據(jù)以上信息回答下列問題:

1)請(qǐng)直接寫出表格中的值;

2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認(rèn)為哪個(gè)班的成績比較好?請(qǐng)說明理由;

3)為了讓學(xué)生重視安全知識(shí)的學(xué)習(xí),學(xué)校將給競賽成績滿分的同學(xué)頒發(fā)獎(jiǎng)狀,該校七年級(jí)新生共570人,試估計(jì)需要準(zhǔn)備多少張獎(jiǎng)狀?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以點(diǎn)M(0,)為圓心,長為半徑作Mx軸于A.B兩點(diǎn),交y軸于C.D兩點(diǎn),連接AM并延長交MP點(diǎn),連接PCx軸于E.

(1)求點(diǎn)C.P的坐標(biāo);

(2)求證:BE=2OE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCO是平行四邊形,OA=2,AB=6,點(diǎn)Cx軸的負(fù)半軸上,將平行四邊形 ABCO繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到平行四邊形ADEF,AD經(jīng)過點(diǎn)O,點(diǎn)F恰好落在x軸的正半軸上.若點(diǎn)D在反比例函數(shù)y=(x0)的圖象上,則k的值為( 。

A.4B.12C.8D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD,B+D=180°,對(duì)角線AC平分∠BAD

(1)如圖1,若∠DAB=120°,且∠B=90°,易證AD+BAAC

(2)如圖2,若將(1)中的條件B=90°”去掉,(1)中的結(jié)論是否成立?請(qǐng)說明理由.

(3)如圖3,若∠DAB=90°,探究邊AD、AB與對(duì)角線AC的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y的圖象如圖所示,若直線yx+m與該圖象恰有三個(gè)不同的交點(diǎn),則m的取值范圍為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線yax2+bx+3與坐標(biāo)軸分別交于點(diǎn)A,B(﹣30),C10),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).

1)求拋物線解析式;

2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積最大?

3)過點(diǎn)Px軸的垂線,交線段AB于點(diǎn)D,再過點(diǎn)PPEx軸交拋物線于點(diǎn)E,連接DE,請(qǐng)問是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某蔬菜種植基地為提高蔬菜產(chǎn)量,計(jì)劃對(duì)甲、乙兩種型號(hào)蔬菜大棚進(jìn)行改造,根據(jù)預(yù)算,改造2個(gè)甲種型號(hào)大棚比1個(gè)乙種型號(hào)大棚多需資金6萬元,改造1個(gè)甲種型號(hào)大棚和2個(gè)乙種型號(hào)大棚共需資金48萬元.

1)改造1個(gè)甲種型號(hào)和1個(gè)乙種型號(hào)大棚所需資金分別是多少萬元?

2)已知改造1個(gè)甲種型號(hào)大棚的時(shí)間是5天,改造1個(gè)乙種型號(hào)大概的時(shí)間是3天,該基地計(jì)劃改造甲、乙兩種蔬菜大棚共8個(gè),改造資金最多能投入128萬元,要求改造時(shí)間不超過35天,請(qǐng)問有幾種改造方案?哪種方案基地投入資金最少,最少是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與雙曲線相交于A(-1,2)B(2,b)兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.

(1)求一次函數(shù)的解析式;

(2)根據(jù)圖象直接寫出不等式的解集;

(3)經(jīng)研究發(fā)現(xiàn):在y軸負(fù)半軸上存在若干個(gè)點(diǎn)P,使得為等腰三角形。請(qǐng)直接寫出P點(diǎn)所有可能的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案