先化簡(jiǎn),再求值:(1-
a-2
a2-4
)÷
a2+a
a2+4a+4
,其中a=
2
考點(diǎn):分式的化簡(jiǎn)求值
專題:計(jì)算題
分析:原式括號(hào)中兩項(xiàng)通分并利用同分母分式的減法法則變形,同時(shí)利用除法法則變形,約分得到最簡(jiǎn)結(jié)果,將a的值代入計(jì)算即可求出值.
解答:解:原式=
a2-4-a+2
(a+2)(a-2)
÷
a(a+1)
(a+2)2

=
(a-2)(a+1)
(a+2)(a-2)
(a+2)2
a(a+1)

=
a+2
a

當(dāng)a=
2
時(shí),原式=
2
+2
2
=1+
2
點(diǎn)評(píng):此題考查了分式的化簡(jiǎn)求值,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

不等式組2≤3x-7<9的所有整數(shù)解為(  )
A、3,4B、4,5
C、3,4,5D、3,4,5,6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AB=AC,E,D,F(xiàn)分別是邊AB,BC,AC的中點(diǎn).
(1)求證:四邊形AEDF是菱形;
(2)若∠B=30°,BC=6,求四邊形AEDF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,矩形ABCD中,AB=4,AD=3,把矩形沿直線AC折疊,使點(diǎn)B落在點(diǎn)E處,AE交CD于點(diǎn)F,連接DE.
(1)求證:△DEC≌△EDA;
(2)求DF的值;
(3)如圖2,若P為線段EC上一動(dòng)點(diǎn),過點(diǎn)P作△AEC的內(nèi)接矩形,使其定點(diǎn)Q落在線段AE上,定點(diǎn)M、N落在線段AC上,當(dāng)線段PE的長(zhǎng)為何值時(shí),矩形PQMN的面積最大?并求出其最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某校要從九年級(jí)一班和二班中各選取10名女同學(xué)組成禮儀隊(duì),選取的兩班女生的身高如下:(單位:厘米)
一班:168  167  170  165  168  166  171  168  167  170
二班:165  167  169  170  165  168  170  171  168  167
(1)補(bǔ)充完成下面的統(tǒng)計(jì)分析表:
班級(jí) 平均數(shù) 方差 中位數(shù) 極差
一班 168
 
168 6
二班 168 3.8
 
 
(2)請(qǐng)選一個(gè)合適的統(tǒng)計(jì)量作為選擇標(biāo)準(zhǔn),說明哪一個(gè)班能被選取.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知點(diǎn)A(2,0),B(0,4),∠AOB的平分線交AB于C,一動(dòng)點(diǎn)P從O點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度,沿y軸向點(diǎn)B作勻速運(yùn)動(dòng),過點(diǎn)P且平行于AB的直線交x軸于Q,作P、Q關(guān)于直線OC的對(duì)稱點(diǎn)M、N.設(shè)P運(yùn)動(dòng)的時(shí)間為t(0<t<2)秒.
(1)求C點(diǎn)的坐標(biāo),并直接寫出點(diǎn)M、N的坐標(biāo)(用含t的代數(shù)式表示);
(2)設(shè)△MNC與△OAB重疊部分的面積為S.
①試求S關(guān)于t的函數(shù)關(guān)系式;
②在圖2的直角坐標(biāo)系中,畫出S關(guān)于t的函數(shù)圖象,并回答:S是否有最大值?若有,寫出S的最大值;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡(jiǎn),再求值:2b2+(b-a)(-b-a)-(a-b)2,其中a=-3,b=
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在開展“美麗廣西,清潔鄉(xiāng)村”的活動(dòng)中某鄉(xiāng)鎮(zhèn)計(jì)劃購(gòu)買A、B兩種樹苗共100棵,已知A種樹苗每棵30元,B種樹苗每棵90元.
(1)設(shè)購(gòu)買A種樹苗x棵,購(gòu)買A、B兩種樹苗的總費(fèi)用為y元,請(qǐng)你寫出y與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)如果購(gòu)買A、B兩種樹苗的總費(fèi)用不超過7560元,且B種樹苗的棵樹不少于A種樹苗棵樹的3倍,那么有哪幾種購(gòu)買樹苗的方案?
(3)從節(jié)約開支的角度考慮,你認(rèn)為采用哪種方案更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,身高為x cm的1號(hào)同學(xué)與身高為y cm的2號(hào)同學(xué)站在一起時(shí),如果用一個(gè)不等式來表示他們的身高關(guān)系,則這個(gè)式子可以表示成x
 
y(用“>”或“<”填空).

查看答案和解析>>

同步練習(xí)冊(cè)答案