【題目】某文具店出售、兩種文具.文具每套元,文具每套元,該店開展促銷活動(dòng),向客戶提供兩種優(yōu)惠方案:
①買一套文具送一套文具.
②文具和文具都按定價(jià)的付款.
現(xiàn)某客戶要到該店購(gòu)買文具套,文具套()
()若該客戶按方案①購(gòu)買需付款____________________元(用含的代數(shù)式表示);若該客戶按方案②購(gòu)買需付款____________________元(用含的代數(shù)式表示)
()當(dāng)時(shí),通過計(jì)算說明按哪種方案購(gòu)買較為合算.
【答案】(1)3200+40x;3600+36x;(2) 當(dāng)x=30時(shí),選擇方案①購(gòu)買更合算
【解析】
(1)根據(jù)題中所給的兩種方案分別列出代數(shù)式即可;
(2)把x=30代入(1)中式子進(jìn)行解答即可.
(1)該客戶按方案①購(gòu)買需付款:200×20+(x-20)×40=3200+40x;
該客戶按方案②購(gòu)買需付款:200×20×0.9+40x×0.9=3600+36x;
(2)當(dāng)x=30時(shí),按方案①購(gòu)買需付款:3200+40×30=4400(元);
按方案②購(gòu)買需付款:3600+36×30=4680(元);
答:當(dāng)x=30時(shí),選擇方案①購(gòu)買更合算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購(gòu)買12臺(tái)節(jié)能新設(shè)備,現(xiàn)有甲乙兩種型號(hào)的設(shè)備可供選購(gòu),經(jīng)調(diào)查,購(gòu)4臺(tái)甲比購(gòu)3臺(tái)乙多用18萬元,購(gòu)3臺(tái)甲比購(gòu)4臺(tái)乙少用4萬元。
(1)求甲乙兩種設(shè)備的單價(jià)。
(2)該公司決定購(gòu)買甲設(shè)備不少于5臺(tái),購(gòu)買資金不超過136萬元,你認(rèn)為該公司有幾種購(gòu)買方案?并直接寫出最省錢的購(gòu)買方案。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,則下列敘述正確的是( )
A. abc<0 B. -3a+c<0
C. b2-4ac≥0 D. 將該函數(shù)圖象向左平移2個(gè)單位后所得到拋物線的解析式為y=ax2+c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,且BA=9,AC=12,點(diǎn)D是斜邊BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)D分別作DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,點(diǎn)G為四邊形DEAF對(duì)角線交點(diǎn),則線段GF的最小值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用工件槽(如圖1)可以檢測(cè)一種鐵球的大小是否符合要求,已知工件槽的兩個(gè)底角均為90°,尺寸如圖(單位:cm).將形狀規(guī)則的鐵球放入槽內(nèi)時(shí),若同時(shí)具有圖1所示的A、B、E三個(gè)接觸點(diǎn),該球的大小就符合要求.圖2是過球心O及A、B、E三點(diǎn)的截面示意圖,求這種鐵球的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】亞奧理事會(huì)于年月3日在土庫曼斯坦阿什哈巴德舉行第屆代表大會(huì),并在會(huì)上投票選出年第屆亞運(yùn)會(huì)舉辦城市為杭州.個(gè)城市的國(guó)際標(biāo)準(zhǔn)時(shí)間(單位:時(shí))在數(shù)軸上表示如圖所示,那么北京時(shí)間年月日時(shí)應(yīng)是( ).
A.倫敦時(shí)間年月日時(shí)
B.巴黎時(shí)間年月日時(shí)
C.智利時(shí)間年月日時(shí)
D.曼谷時(shí)間年月日時(shí)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)為1.格點(diǎn)三角形 ABC (頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn) A ,C 的坐標(biāo)分別是(-4 ,6) ,(-1,4) .
(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;
(2)請(qǐng)畫出△ABC 關(guān)于 x 軸對(duì)稱的△A1B1C1 ;并直接寫出A1B1C1的坐標(biāo).
(3)請(qǐng)?jiān)?/span> y 軸上求作一點(diǎn) P ,使△PB1C 的周長(zhǎng)最小,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知任意一個(gè)三角形的三個(gè)內(nèi)角的和是180°,如圖1,在ABC中,∠ABC的角平分線BO與∠ACB的角平分線CO的交點(diǎn)為O.
(1)若∠A=70°,求∠BOC的度數(shù);
(2)若∠A=α,求∠BOC的度數(shù);
(3)如圖2,若BO、CO分別是∠ABC、∠ACB的三等分線,也就是∠OBC=∠ABC,∠OCB=∠ACB,∠A=α,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】ABCD中,E是CD邊上一點(diǎn),
(1)將△ADE繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),使AD、AB重合,得到△ABF,如圖1所示.觀察可知:與DE相等的線段是 ,∠AFB=∠
(2)如圖2,正方形ABCD中,P、Q分別是BC、CD邊上的點(diǎn),且∠PAQ=45°,試通過旋轉(zhuǎn)的方式說明:DQ+BP=PQ;
(3)在(2)題中,連接BD分別交AP、AQ于M、N,你還能用旋轉(zhuǎn)的思想說明BM2+DN2=MN2嗎?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com