如圖,以等邊△OAB的高OC為邊向逆時針方向作等邊△OCD,CD交OB于點E,再以OE為邊向逆時針方向作等邊△OEF,EF交OD于點G,再以OG為邊向逆時針方向作等邊△OGH,…,按此方法操作,最后得到△OMN,此時N在AO延長線上.若AB=1,則ON=
9
16
9
16
分析:先根據(jù)等邊三角形的性質(zhì)及銳角三角函數(shù)的定義分別求出OC、OE的長,找出規(guī)律即可得出ON的長.
解答:解:∵等邊△ABC的邊長為1,OC⊥AB,
∴OC=OA•sin60°=1×
3
2
=
3
2
,
同理,OE=OC•sin60°=
3
2
×
3
2
=(
3
2
2=
3
4
,
OG=OE•sin60°=
3
4
×
3
2
=(
3
2
3=
3
3
8

故OM=ON=(
3
2
4=
9
16

故答案為:
9
16
點評:本題考查的是等邊三角形的性質(zhì)及銳角三角函數(shù)的定義,熟知銳角三角函數(shù)的定義是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,以等邊△OAB的邊OB所在直線為x軸,點O為坐標原點,使點A在第一象限建立平面直角坐標系,其中△OAB邊長為6個單位,點P從O點出發(fā)沿折線OAB向B點以3單位/秒的速度向B點運動,點Q從O點出發(fā)以2單位/秒的速度沿折線OBA向A點運動,兩點同時出發(fā),運動時間為t(單位:秒),當兩點相遇時運動停止.
精英家教網(wǎng)
(1)點A坐標為
 
,P、Q兩點相遇時交點的坐標為
 
;
(2)當t=2時,S△OPQ=
 
;當t=3時,S△OPQ=
 

(3)設△OPQ的面積為S,試求S關于t的函數(shù)關系式;
(4)當△OPQ的面積最大時,試求在y軸上能否找一點M,使得以M、P、Q為頂點的三角形是Rt△?若能找到請求出M點的坐標,若不能找到請簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(原創(chuàng)題)如圖,以等邊△OAB的邊OB所在直線為x軸,點O為坐標原點,使點A在第一象限建立平面直角坐標系,其中△OAB邊長為4個單位,點P從O點出發(fā)沿折線OAB向B點以2個單位/秒的精英家教網(wǎng)速度向終點B點運動,點Q從B點出發(fā)以1個單位/秒的速度向終點O點運動,兩點同時出發(fā),運動時間為t(單位:秒).
①直接寫出P與Q點的坐標,并注明t的取值范圍;
②當t=
 
時,PQ⊥OA;當t=
 
時,PQ⊥AB;當t=
 
時,PQ⊥OB;
③△OPQ面積為S,求S關于t的函數(shù)關系式并指出S的最大值;
④若直線PQ將△OAB分成面積比為3:5兩部分,求此時直線PQ的解析式;若不能請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,以等邊△OAB的高OC為邊向逆時針方向作等邊△OCD,CD交OB于點E,再以OE為邊向逆時針方向作等邊△OEF,EF交OD于點G,再以OG為邊向逆時針方向作等邊△OGH,…,按此方法操作,最終得到△OMN,此時點N在OA上.若AB=1,則ON的長為( 。
A、(
3
2
)
12
B、(
3
2
)
10
C、(
3
3
)
12
D、(
3
3
)
10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,以等邊△OAB的邊OB所在直線為x軸,點O為坐標原點,使點A在第一象限建立平面直角坐標系,其中△OAB邊長為4個單位,點P從O點出發(fā)沿折線OAB向B點以2個單位/秒的速度向終點B點運動,點Q從B點出發(fā)以1個單位/秒的速度向終點O點運動,兩個點同時出發(fā),運動時間為t(秒).
(1)請用t表示點P的坐標
(t,
3
t)或(t,4
3
-
3
t)
(t,
3
t)或(t,4
3
-
3
t)
和點Q的坐標
(4-t,0)
(4-t,0)
,其中t的取值范圍是
0≤t≤2或2<t≤4
0≤t≤2或2<t≤4
;
(2)當t=
4
5
4
5
時,PQ⊥OA;當t=
16
5
16
5
時,PQ⊥AB;當t=
2
2
時,PQ⊥OB;
(3)△OPQ面積為S,求S關于t的函數(shù)關系式并指出S的最大值;
(4)若直線PQ將△OAB分成面積比為3:5兩部分?求此時直線PQ的解析式;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案