新星電子科技公司積極應(yīng)對(duì)2008年世界金融危機(jī),及時(shí)調(diào)整投資方向,瞄準(zhǔn)光伏產(chǎn)業(yè),建成了太陽(yáng)能光伏電池生產(chǎn)線.由于新產(chǎn)品開(kāi)發(fā)初期成本高,且市場(chǎng)占有率不高等因素的影響,產(chǎn)品投產(chǎn)上市一年來(lái),公司經(jīng)歷了由初期的虧損到后來(lái)逐步盈利的過(guò)程(公司對(duì)經(jīng)營(yíng)的盈虧情況每月最后一天結(jié)算1次).公司累積獲得的利潤(rùn)y(萬(wàn)元)與銷售時(shí)間第x(月)之間的函數(shù)關(guān)系式(即前x個(gè)月的利潤(rùn)總和y與x之間的關(guān)系)對(duì)應(yīng)的點(diǎn)都在如圖所示的圖象上.該圖象從左至右,依次是線段OA、曲線AB和曲線BC,其中曲線AB為拋物線的一部分,點(diǎn)A為該拋物線的頂點(diǎn),曲線BC為另一拋物線y=-5x2+205x-1230的一部分,且點(diǎn)A,B,C的橫坐標(biāo)分別為4,10,12.
(1)求該公司累積獲得的利潤(rùn)y(萬(wàn)元)與時(shí)間第x(月)之間的函數(shù)關(guān)系式;
(2)直接寫(xiě)出第x個(gè)月所獲得S(萬(wàn)元)與時(shí)間x(月)之間的函數(shù)關(guān)系式(不需要寫(xiě)出計(jì)算過(guò)程);
(3)前12個(gè)月中,第幾個(gè)月該公司所獲得的利潤(rùn)最多,最多利潤(rùn)是多少萬(wàn)元?
(1)設(shè)直線OA的解析式為y=kx,
∵點(diǎn)O(0,0),A(4,-40)在該直線上,
∴-40=4k,
解得k=-10,
∴y=-10x;
∵點(diǎn)B在拋物線y=-5x2+205x-1230上,
設(shè)B(10,m),則m=320.
∴點(diǎn)B的坐標(biāo)為(10,320).
∵點(diǎn)A為拋物線的頂點(diǎn),
∴設(shè)曲線AB所在的拋物線的解析式為y=a(x-4)2-40,
∴320=a(10-4)2-40,
解得a=10,
即y=10(x-4)2-40=10x2-80x+120.
∴y=
-10x(x=1、2、3、4)
10x2-80x+120(x=5、6、7、8、9)
-5x2+205x-1230(x=10、11、12)



(2)利用第x個(gè)月的利潤(rùn)應(yīng)該是前x個(gè)月的利潤(rùn)之和減去前x-1個(gè)月的利潤(rùn)之和:
S=
-10x-[-10(x-1)](x=1、2、3、4)
10x2-80x+120-[10(x-1)2-80(x-1)+120](x=5、6、7、8、9)
-5x2+205x-1230-(-5(x-1)2+205(x-1)-1230)(x=10、11、12)
,
即S=
-10(x=1,2,3,4)
20x-90(x=5,6,7,8,9)
-10x+210(x=10,11,12)
;

(3)由(2)知當(dāng)x=1,2,3,4時(shí),s的值均為-10,
當(dāng)x=5,6,7,8,9時(shí),s=20x-90,
即當(dāng)x=9時(shí)s有最大值90,
而在x=10,11,12時(shí),s=-10x+210,
當(dāng)x=10時(shí),s有最大值110,
因此第10月公司所獲利潤(rùn)最大,它是110萬(wàn)元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系xOy中,二次函數(shù)y=-
2
3
x2+bx+5
的圖象與x軸、y軸的公共點(diǎn)分別為A(5、0)、B,點(diǎn)C在這個(gè)二次函數(shù)的圖象上,且橫坐標(biāo)為3.
(1)求這個(gè)二次函數(shù)的解析式;
(2)求∠BAC的正切值;
(3)如果點(diǎn)D在這個(gè)二次函數(shù)的圖象上,且∠DAC=45°,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A(-2,0),B(1,0),交y軸于C(0,-2),過(guò)B、C畫(huà)直線.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P在x軸負(fù)半軸上,且PB=PC,求OP的長(zhǎng);
(3)點(diǎn)M在二次函數(shù)圖象上,過(guò)M向直線BC作垂線,垂足為H.若M在y軸左側(cè),且△CHM△BOC,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

衢江區(qū)某蔬菜基地種植西紅柿,由歷年市場(chǎng)行情得知,從2月1日起的300天內(nèi),西紅柿市場(chǎng)售價(jià) w1與上市時(shí)間t的關(guān)系用圖甲的一條折線表示;西紅柿的種植成本 w2與上市時(shí)間t的關(guān)系用圖乙表示的拋物線段表示.
(1)求出圖甲表示的市場(chǎng)售價(jià) w1與時(shí)間t的函數(shù)關(guān)系式;
(2)求出圖乙表示的種植成本 w2與時(shí)間t的函數(shù)關(guān)系式;
(3)市場(chǎng)售價(jià)減去種植成本為純收益,當(dāng)0<t≤200時(shí),何時(shí)上市西紅柿純收益最大?(售價(jià)與成本單位:元/百千克,時(shí)間單位:天)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c的對(duì)稱軸為直線x=1,與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中A(-1,0)、C(0,3).
(1)求此拋物線的解析式;
(2)若此拋物線的頂點(diǎn)為P,將△BOC繞著它的頂點(diǎn)B順時(shí)針在第一象限內(nèi)旋轉(zhuǎn),旋轉(zhuǎn)的角度為α,旋轉(zhuǎn)后的圖形為△BO′C′.
①當(dāng)O′C′CP時(shí),求α的大;
②△BOC在第一象限內(nèi)旋轉(zhuǎn)的過(guò)程中,當(dāng)旋轉(zhuǎn)后的△BO′C′有一邊與BP重合時(shí),求△BO′C′不在BP上的頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=x2+bx+c交x軸于A(1,0)、B(3,0)兩點(diǎn),交y軸于點(diǎn)C,其頂點(diǎn)為D.
(1)求b、c的值并寫(xiě)出拋物線的對(duì)稱軸;
(2)連接BC,過(guò)點(diǎn)O作直線OE⊥BC交拋物線的對(duì)稱軸于點(diǎn)E.求證:四邊形ODBE是等腰梯形;
(3)拋物線上是否存在點(diǎn)Q,使得△OBQ的面積等于四邊形ODBE的面積的
1
3
?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)y=
2
3
x2的圖象如圖所示,點(diǎn)A0位于坐標(biāo)原點(diǎn),A1,A2,A3,…,A2008在y軸的正半軸上,B1,B2,B3,…,B2008在二次函數(shù)y=
2
3
x2第一象限的圖象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2007B2008A2008都為等邊三角形,請(qǐng)計(jì)算△A0B1A1的邊長(zhǎng)=______;△A1B2A2的邊長(zhǎng)=______;△A2007B2008A2008的邊長(zhǎng)=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若所求的二次函數(shù)圖象與拋物線y=2x2-4x-1有相同的頂點(diǎn),并且在對(duì)稱軸的左側(cè),y隨x的增大而增大,在對(duì)稱軸的右側(cè),y隨x的增大而減小,則所求二次函數(shù)的解析式為( 。
A.y=-x2+2x+4B.y=-ax2-2ax-3(a>0)
C.y=-2x2-4x-5D.y=ax2-2ax+a-3(a<0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知正方形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,拋物線y=-
2
3
x2+bx+c經(jīng)過(guò)點(diǎn)A,B,交正x軸于點(diǎn)D,E是OC上的動(dòng)點(diǎn)(不與C重合)連接EB,過(guò)B點(diǎn)作BF⊥BE交y軸與F
(1)求b,c的值及D點(diǎn)的坐標(biāo);
(2)求點(diǎn)E在OC上運(yùn)動(dòng)時(shí),四邊形OEBF的面積有怎樣的規(guī)律性?并證明你的結(jié)論;
(3)連接EF,BD,設(shè)OE=m,△BEF與△BED的面積之差為S,問(wèn):當(dāng)m為何值時(shí)S最小,并求出這個(gè)最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案